Bread made from Triticum dicoccum grain with buckwheat starter culture as a source of valuable nutrients
DOI:
https://doi.org/10.5219/scifood.74Keywords:
Triticum dicoccum grain, buckwheat sourdough, bread, chemical compositionAbstract
This study aimed to evaluate the nutritional value of bread prepared from Triticum dicoccum grain on thick buckwheat sourdough. Products made from Triticum dicoccum grain are attracting significant interest among consumers and researchers due to their higher nutritional value, unique taste and aroma, and beneficial properties. Our data showed that the studied variety of Triticum dicoccum grain had a higher protein content than commercial wheat. The quantity and quality of gluten in Triticum dicoccum grain are inferior to those of commercial wheat (Triticum aestivum). The ratio of gliadin to glutenin in emmer was higher than in common wheat. This indicates that to obtain high-quality bread from Triticum dicoccum grain, technological methods are necessary. Triticum dicoccum grain has hard, tightly adhering husks. Therefore, to soften the husks and improve bread quality, the grain was pre-treated with an enzyme preparation containing cellulase, β-glucanase, and xylanase. Fermentation of the grain led to changes in the microstructure of the surface and cross-sections. After fermentation under optimal enzyme conditions, the Triticum dicoccum grain was dispersed. Thick buckwheat sourdough was prepared using flour from whole-ground buckwheat grain and kefir grain culture Lc3/P1/Ac1. The kefir grain culture contained the following microorganisms: Lactococcus lactis, Lactococcus cremoris, Leuconostoc dextranicum, Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacillus fermenti, Acetobacter aceti, Saccharomyces cerevisiae, Saccharomyces lactis. Additionally, no baker’s yeast was added. Experimental data show that the sourdough exhibits high fermentative activity. To improve the bread's physicochemical properties, 4% dry wheat gluten was added. It was established that the optimal amount of thick buckwheat sourdough is 50% of the mass of dispersed Triticum dicoccum grain. The resulting bread possessed good sensory, physicochemical, and nutritional properties. The bread was found to contain higher levels of the essential amino acids lysine, phenylalanine, leucine, and isoleucine, methionine, and valine, as well as vitamins B6, B2, B3, B1, PP, and E, and the trace elements Fe, Mn, Zn, Cu, Ni, and Co. The antioxidant activity was 3.2 times (p<0.01) higher than that of bread made from commercial Triticum aestivum grains. Bread made from Triticum dicoccum grains, when baked with a thick buckwheat starter culture, can expand the range of functional bread types with potential beneficial properties.
References
1. Barrett, E. M., Batterham, M. J., Ray, S., & Beck, E. J. (2019). Whole grain, bran and cereal fibre consumption and CVD: a systematic review. The British journal of nutrition, 121(8), 914–937. https://doi.org/10.1017/S000711451900031X
2. Hu, Y., Ding, M., Sampson, L., Willett, W. C., Manson, J. E., Wang, M., Rosner, B., Hu, F. B., & Sun, Q. (2020). Intake of whole grain foods and risk of type 2 diabetes: results from three prospective cohort studies. BMJ (Clinical research ed.), 370, m2206. https://doi.org/10.1136/bmj.m2206
3. Tieri, M., Ghelfi, F., Vitale, M., Vetrani, C., Marventano, S., Lafranconi, A., Godos, J., Titta, L., Gambera, A., Alonzo, E., Sciacca, S., Riccardi, G., Buscemi, S., Del Rio, D., Ray, S., Galvano, F., Beck, E., & Grosso, G. (2020). Whole grain consumption and human health: an umbrella review of observational studies. International journal of food sciences and nutrition, 71(6), 668–677. https://doi.org/10.1080/09637486.2020.1715354
4. Yu, E. Y. W., Wesselius, A., Mehrkanoon, S., Brinkman, M., van den Brandt, P., White, E., Weiderpass, E., Le Calvez-Kelm, F., Gunter, M., Huybrechts, I., Liedberg, F., Skeie, G., Tjonneland, A., Riboli, E., Giles, G. G., Milne, R. L., & Zeegers, M. P. (2020). Grain and dietary fiber intake and bladder cancer risk: a pooled analysis of prospective cohort studies. The American journal of clinical nutrition, 112(5), 1252–1266. https://doi.org/10.1093/ajcn/nqaa215
5. GBD 2017 Diet Collaborators (2019). Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England), 393(10184), 1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8
6. Dinu, M., & Martini, D. (2023). Ultra-Processed Foods, Diet Quality and Human Health. Nutrients, 15(13), 2890. https://doi.org/10.3390/nu15132890
7. Kuznetsova, E. A., Rebezov, M. B., & Nasrullaeva, G. M. (2024). Study of changes in antioxidant activity, microstructure, and mineral composition of nadir wheat grain during preparation for whole grain bread production Agrarian Science, (12), 166–172. https://doi.org/10.32634/0869-8155-2024-389-12-166-172
8. Okarter, N., & Liu, R. H. (2010). Health benefits of whole grain phytochemicals. Crit. Rev. Food Science & Nutrition, (50), 193–208. https://doi.org/10.1080/10408390802248734
9. Călinoiu, L. F. & Vodnar, D. C. (2018). Whole grains and phenolic acids: a review on bioactivity, functionality, health benefits and bioavailability. Nutrients, (10), 1615. https://doi.org/10.3390/nu10111615
10. Liu, J., Yu, L. L., & Wu, Y. (2020). Bioactive components and health beneficial properties of whole wheat foods. Journal of Agricultural and Food Chemistry, 68, 12904–12915. https://doi.org/10.1021/acs.jafc.0c00705
11. Makhmudov, F. A., Asimov, S. T., Rebezov, M. B., Iztaev, A. I., & Konarbayeva, Z. K. (2024). Technology for production and quality of bread baked from whole grind wheat flour. Bulletin of Shakarim University. Technical Sciences, 1(13), 165–173. https://doi.org/10.53360/2788-7995-2024-1(13)-21
12. Koistinen, V. M., & Hanhineva, K. (2017). Mass spectrometry-based analysis of whole-grain phytochemicals. Critical reviews in food science and nutrition, 57(8), 1688–1709. https://doi.org/10.1080/10408398.2015.1016477
13. Kuznetsova, E. A., Rebezov, M. B., Kuznetsova, E. A., & Nasrullaeva, G. M. (2024). Study of Changes in Antioxidant Activity, Microstructure, and Mineral Composition of Nadir Wheat Grain During Preparation for Whole Grain Bread Production. Agrarian science, (12), 166–172. https://doi.org/10.32634/0869-8155-2024-389-12-166-172
14. Naumenko, N. V., Chaplina, A. A., Sysoeva, P. V., Fatkullin, R. I., Naumenko, E. E., & Kalinina, I. V. (2024). Influence of non-traditional raw materials on rheological parameters of dough and quality of bakery products. Agrarian science, (4), 146–152. https://doi.org/10.32634/0869-8155-2024-381-4-146-152
15. Sang, S., & Chu, Y. (2017). Whole grain oats, more than just a fiber: role of unique phytochemicals. Molecular Nutrition & Food Research, 61, 1600715. https://doi.org/10.1002/mnfr.201600715
16. Zhu, Y., & Sang, S. (2017). Phytochemicals in whole grain wheat and their health‐promoting effects. Molecular Nutrition & Food Research, 61, 1600852. https://doi.org/10.1002/mnfr.201600852
17. Călinoiu, L. F., & Vodnar, D. C. (2018). Whole grains and phenolic acids: a review on bioactivity, functionality, health benefits and bioavailability. Nutrients, (10), 1615. https://doi.org/10.3390/nu10111615
18. Serreli, G., Le Sayec, M., Thou, E., Lacour, C., Diotallevi, C., Dhunna, M. A., Deiana, M., Spencer, J. P. E., & Corona, G. (2021). Ferulic Acid Derivatives and Avenanthramides Modulate Endothelial Function through Maintenance of Nitric Oxide Balance in HUVEC Cells. Nutrients, 13(6), 2026. https://doi.org/10.3390/nu13062026
19. Dinu, M., Whittaker, A., Pagliai, G., Benedettelli, S., & Sofi, F. (2018). Ancient wheat species and human health: Biochemical and clinical implications. Journal of Nutritional Biochemistry, 52, 1–9. https://doi.org/10.1016/j.jnutbio.2017.09.001
20. Nakov, G., Brandolini, A., Ivanova, N., Dimov, I., & Stamatovska, V. (2018). The effect of einkorn (Triticum monococcum L.) whole meal flour addition on physico-chemical characteristics, biological active compounds and in vitro starch digestion of cookies. Journal of Cereal Science, 83, 116–122. https://doi.org/10.1016/j. jcs.2018.08.004
21. Temirbekova, S. K., Begeulov, M. Sh., Baida, I. D., Zverev, S. V., & Politukha, O. V. (2024). Technological properties of grain of new varieties of ancient wheat species. Agrarian science, (11), 157–163. https://doi.org/10.32634/0869-8155-2024-388-11-157-163
22. Ramazanov, I. A., Nikolaeva, M. A., & Ramazanov, S. A. (2025). A study of food consumption traditions in the context of the changes taking place in the global marketing environment. Agrarian science, (5), 148–157. https://doi.org/10.32634/0869-8155-2025-394-05-148-157
23. Belcar, J., Sobczyk, A., Sobolewska, M., Stankowski, S., & Gorzelany, J. (2020). Characteristics of technological properties of grain and flour from ancient varieties of wheat (einkorn, emmer and spelt). Acta Universitatis Cibiniensis. Series E: Food Technology, 24(2), 269–278. https://doi.org/10.2478/aucft-2020-0024
24. Belcar, J., Sobczyk, A., Sekutowski, T. R., Stankowski, S., & Gorzelany, J. (2021). Evaluation of flours from ancient varieties of wheat (einkorn, emmer, spelt) used in production of bread. Acta Universitatis Cibiniensis. Series E: Food Technology, 25(1), 53–66. https://doi.org/10.2478/aucft-2021-0005
25. Dhanavath, S., & Prasada Rao, U. J. S. (2017). Nutritional and Nutraceutical Properties of Triticum dicoccum Wheat and Its Health Benefits: An Overview. Journal of Food Science, 82(10), 2243–2250. https://doi.org/10.1111/1750-3841.13844
26. Zrckova, M., Capouchova, I., Paznocht, L., Eliasova, M., Dvorak, P., Konvalina, P., Janovska, D., Orsak, M., & Beckova, L. (2019). Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, wheat species and crop year. Plant Soil and Environment, 65(5), 260–266. https://doi.org/10.17221/134/2019-PSE
27. Stehno, Z. (2007). Emmer wheat Rudico can extend the spectra of cultivated plants. Czech Journal of Genetics and Plant Breeding, 43(3), 113–115. https://doi.org/10.17221/2072-CJGPB
28. Kuznetsova, E., Shayapova, L., Klimova, E., Nasrullaeva, G., Brindza, J., Stolyarov, M., Zomiteva, G., Bychkova, T., & Gavrilina, V. (2019). Composition, quality characteristics and microstructure of the grain Triticum dicoccum. Potravinarstvo®Slovak Journal of Food Sciences, 11(1), 658–663. https://doi.org/10.5219/1174
29. Mohan, B. H., & Malleshi, N. G. (2006). Characteristics of native and enzymatically hydrolyzed common wheat (Triticum aestivum) and dicoccum wheat (Triticum dicoccum) starches. European Food Research and Technology, 223, 355–361. https://doi.org/10.1007/s00217-005-0212-x
30. Abdel-Aal, El S. M., & Rabalski, I. (2008). Effect of baking on nutritional properties of starch in organic spelt whole grain products. Food Chemistry, 111(1), 150–156. https://doi.org/10.1016/j.foodchem.2008.03.050
31. Duchoňová, L., & Šturdík, E. (2010). Cereals as basis of preventing nutrition against obesity. Potravinarstvo, 4(4), 6–15. https://doi.org/10.5219/76
32. Zencirci, N., Ulukan, H., Baloch, F. S., Mansoor, S., & Rasheed, A. (Eds.). (2022). Ancient wheats. Springer. https://doi.org/10.1007/978-3-031-07285-7
33. Longin, C. F. H., & Würschum, T. (2016). Back to the future – tapping into ancient grains for food diversity. Trends in Plant Science, 21(9), 731–737. https://doi.org/10.1016/j.tplants.2016.05.005
34. Piasecka-Jozwiak, K., Slowik, E., Rozmierska, J., & Chablowskas, B. (2015). Characteristic of organic flour produced from einkorn wheat and rheological properties of einkorn dough in terms of bread obtaining. Journal of Research and Applications in Agricultural Engineering, 60(4), 61–66.
35. Kohajdova, Z., & Karovicova, J. (2012). Effect of incorporation of spelt flour on the dough properties and wheat bread quality. Chemical Papers, 67, 398–407.
36. Cankurtaran-Komürcü, T., & Bilgiçli, N. (2023). Utilization of germinated ancient wheat (Emmer and Einkorn) flours to improve functional and nutritional properties of bread. Innovative Food Science & Emerging Technologies, 84, Article 103292. https://doi.org/10.1016/j.ifset.2023.103292
37. Șerban, L. R., Paucean, A., Man, S. M., Chis¸, M. S., & Muresan, V. (2021). Ancient wheat species: Biochemical profile and impact on sourdough bread characteristics — a review. Processes, 9(11), 2008. https://doi.org/10.3390/pr9112008
38. Getman, I. A., & Mikhonik, L., A. (2021). Technological aspects of using buckwheat starter culture of spontaneous fermentation in wheat bread technology. Innovative processes and technologies : proceedings of the International Scientific and Practical Conference, June 24-25, 2021, Kutasi. Kutasi : Akaki Tsereteli State University, 157–163.
39. Moroni, A. V., Zannini, E., Sensidoni, G., & Arendt, E. K. (2014). Exploitation of buckwheat sourdough for the production of wheat bread. European Food Research and Technology, 235, 659–668. https://doi.org/10.1007/s00217-012-1790-z
40. Bogatyreva, T. G., Izosimov, V. P., Iunikhina, E. V., & Egorova, V. V. Patent No. 2519754 Russian Federation, Method of production of rye bread with buckwheat flour : No. 2013119393 : application 04.29.2013 : published 06.20.2014.; the applicant is the Federal State Budgetary Educational Institution of Higher Professional Education "Moscow State University of Food Production".
41. Jiang, P., Burczynski, F., Campbell, C. J., Pierce, G., Austria, J. A., & Briggs, C. J. (2007). Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International, 40, 356–364. https://doi.org/10.1016/j.foodres.2006.10.009
42. Zhu, F. (2016). Chemical composition and health effects of Tartary buckwheat. Food Chemistry, 203, 231–245. https://doi.org/10.1016/j.foodchem.2016.02.050
43. Holasovа, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J., & Vavreinova, S. (2002). Buckwheat - the source of antioxidant activity in functional foods. Food Research International, 35, 207–211. https://doi.org/10.1016/S0963-9969(01)00185-5
44. Zielińska, D., Turemko, M., Kwiatkowski, J., & Zieliński, H. (2012). Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules, 17(8), p. 9668-9682. https://doi.org/10.3390/molecules17089668
45. Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D., & Mau, J. L. (2009). Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chemistry, 112, 987–991. https://doi.org/10.1016/j.foodchem.2008.07.022
46. Bojňanská, T., Frančáková, H., Chlebo, P., & Vollmannová, A. (2009). Rutin content in buckwheat enriched bread and influence of its consumption on plasma total antioxidant status. Czech Journal of Food Sciences, 27, 236–240. https://doi.org/10.17221/967-CJFS
47. Brindzová, L., Mikusova, L., & Takacsova, M. (2009). Antioxidant effect of wheat bakery products supplemented with buckwheat, oat and barley beta-D-glucan and their nutritional and sensory evaluation. In Proceedings of the 5th International Congress Flour-Bread, 09.7th Croatian Congress of Cereal Technologists. Opatija, Croatia, 485–491.
48. Yermakov, A. I. (1972). Methods for biochemical study of plants. Leningrad, Russia: Kolos.
49. Silva, В. A., Ferreres, F., Malva, J. O., & Dias, A. C. P. (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, 90(1-2), 157–167. https://doi.org/10.1016/j.foodchem.2004.03.049
50. Skrobot, D., Dapcevic-Hadnađev, T., Tomic, J., Maravic, N., Popovic, N., Jovanov, P., & Hadnađev, M. (2022). Techno-functional performance of emmer, spelt and khorasan in spontaneously fermented sourdough bread. Foods,11(23), 3927. https://doi.org/10.3390/foods11233927
51. Geisslitz, S., Wieser, H., Scherf, K. A., & Koehler, P. (2018). Gluten protein composition and aggregation properties as predictors for bread volume of common wheat, spelt, durum wheat, emmer and einkorn. Journal of Cereal Science, 83, 204–212. https://doi.org/10.1016/j.jcs.2018.08.012
52. Hanchinal, R. R., Yenagi, N. B., Bhuvaneswari, G., & Math, K. K. (2005). Grain quality and value addition of emmer wheat. University of Agricultural Sciences Dharwad, 63.
53. Kuznetsova E., Motyleva S., Mertvischeva M., Zomitev V., & Brindza J. (2016). Composition and microstructure alteration of triticale grain surface after processing by enzymes of cellulase complex. Potravinarstvo® Scientific Journal for Food Industry, (1), 23–29. https://doi.org/10.5219/411
54. Kuznetsova E., Cherepnina L., Motyleva S., & Brindza J. (2016). Redistribution of mineral elements in wheat grain when applying the complex enzyme preparations based on phytase. Potravinarstvo® Scientific Journal for Food Industry, (1), 47–53. https://doi.org/10.5219/413
55. Gänzle M.G., & Zheng J. (2019). Lifestyles of sourdough lactobacilli – Do they matter for microbial ecology and bread quality? International Journal of Food Microbiology, 302, 15–23. https://doi.org/10.1016/j.ijfoodmicro.2018.08.019
56. Gobbetti M., De Angelis M., Di Cagno R., Calasso M., Archetti G., & Rizzello C.G. (2019). Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 302, 103–113. https://doi.org/10.1016/j.ijfoodmicro.2018.05.018
57. Plessas, S., Pherson, L., Bekatorou, A., Nigam, P., & Koutinas, A. A. (2005). Bread making using kefir grains as bakers yeast. Food Chemistry, 93, 585–589. https://doi.org/10.1016/j.foodchem.2004.10.034
58. Abdel-Aal, E.-S. M., & Hucl, P. (2002). Amino acid composition and in vitro protein digestibility of selected ancient wheats and their end products. Journal of Food Composition and Analysis, 15(6), 737–747. https://doi.org/10.1006/jfca.2002.1094
59. Christgen, S. L, & Becker, D. F. (2019). Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal, 30(4), 683–709. https://doi.org/10.1089/ars.2017.7335
60. Golijan, J. M., Lekić, S. S., Dojčinović, B. P., Dramićanin, A. M., Milinčić, D. D., Pešić, M. B., Barać, M. B., & Kostić, A. Ž. (2022). Mineral and nutritional assessments of soybean, buckwheat, spelt, and maize grains grown conventionally and organically. International. Food Research Journal, 29(3), 646–658. https://doi.org/10.47836/ifrj.29.3.16
61. Bonafaccia, G., Marocchini, M., & Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9–15. https://doi.org/10.1016/S0308-8146(02)00228-5
62. Ortiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., & Penã, R. J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Sciences. 46, 293–307. https://doi.org/10.1016/j.jcs.2007.06.005
63. Piergiovanni, A. R., Laghetti, G., & Perrino, P. (1996). Characteristics of meal from hulled wheats (Triticum dicoccum Schrank and T. spelta L.): an evaluation of selected accessions. Cereal Chemistry, 73(6), 732–735.
64. Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Zhang, W., Georgiev, M. I., Park, S. U., & Zhou, M. (2021). Treasure from Garden: Bioactive Compounds of Buckwheat. Food Chemistry, 335, 127653. https://doi.org/10.1016/j.foodchem.2020.127653
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Elena Kuznetsova , Maksim Rebezov, Zhyldyz Irmatova, Victoria Simonova, Elena Kuznetsova, Sukhrab Makhmudov, Sanavar Azimova, Damira Tattibayeva (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.







