Development of functional extruded crispbreads enriched with wild plant concentrates
DOI:
https://doi.org/10.5219/scifood.55Keywords:
bioflavonoids, concentrates, crispbreads, ultrasound, wildplantsAbstract
In the context of growing interest in functional nutrition, enriching food products with naturally active compounds is an important task. This research aimed to develop extruded cereal crackers enriched with concentrates from wild plants in Kazakhstan, such as hawthorn (Crataegus laevigata), chokeberry, rosehip, and sea buckthorn. The concentrates were obtained by ultrasound-assisted extraction and concentrated using vacuum evaporation. Wheat and buckwheat crispbreads were prepared by high-temperature extrusion. Afterwards, a plant-based syrup containing the concentrates was applied. This was a controlled experimental study. Samples were prepared using a fixed recipe and analyzed for bioflavonoid content and quality indicators. The bioactive composition was evaluated in the accredited laboratory of Nutritest LLP according to the methodology Р 4.1.1672-2003. The highest content of rutin (157.8 ± 7.9 mg/100 g) was observed in hawthorn samples, dihydroquercetin (181.93 ± 9.10 mg/100 g) in chokeberry samples, and chlorogenic acid (42.75 ± 2.14 mg/100 g) in sea buckthorn samples. All samples met physicochemical standards (moisture, acidity, ash content). The study confirmed the high antioxidant activity and potential of wild plants for the development of functional foods. These products have attractive sensory characteristics and are promising for use in preventive nutrition.
References
1. Ministry of Agriculture of the Republic of Kazakhstan. (2021). Strategy for the development of the food and processing industry of the Republic of Kazakhstan until 2030 (47 pp.). Astana. (in English, original in Kazakh/Russian)
2. Ministry of Health of the Republic of Kazakhstan. (2021). National project “Healthy Nation” for 2021–2025 (68 pp.). Astana. (in English, original in Kazakh/Russian)
3. United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development (41 pp.). UN Publishing. Available at: https://sdgs.un.org/2030agenda
4. Izembayeva, A., Moldakulova, Z., Abdreeva, A., Iskakova, G., Baiysbayeva, M., & Atyhanova, M. (2024). Substantiation of wild plants used as functional ingredients in the technology of crisp grain bread. Potravinarstvo Slovak Journal of Food Sciences, 18, 697–718. https://doi.org/10.5219/1998
5. Tereshchuk, L., Starovoytova, K., Babich, O., Dyshlyuk, L., Sergeeva, I., Pavsky, V., Ivanova, S., & Prosekov, A. (2020). Sea Buckthorn and Rosehip Oils with Chokeberry Extract to Prevent Hypercholesterolemia in Mice Caused by a High-Fat Diet In Vivo. Nutrients, 12(10), 2941. https://doi.org/10.3390/nu12102941
6. Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
7. Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A. S., & Chemat, F. (2021). Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrasonics Sonochemistry, 76, 105625. https://doi.org/10.1016/j.ultsonch.2021.105625
8. Lefebvre, T., Destandau, E., & Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A, 1635, 461770. https://doi.org/10.1016/j.chroma.2020.461770
9. Borczak, B., Sikora, M., Kapusta-Duch, J., Fołta, M., Szewczyk, A., Zięć, G., Doskočil, I., & Leszczyńska, T. (2022). Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. Molecules, 27(17), 5531. https://doi.org/10.3390/molecules27175531
10. Usman, M., Nakagawa, M., & Cheng, S. (2023). Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes, 11(12), 3444. https://doi.org/10.3390/pr11123444
11. Kumar, M., Dahuja, A., Tiwari, S., Punia, S., Tak, Y., Amarowicz, R., Bhoite, A. G., Singh, S., Joshi, S., Panesar, P. S., Prakash Saini, R., Pihlanto, A., Tomar, M., Sharifi-Rad, J., & Kaur, C. (2021). Recent trends in extraction of plant bioactives using green technologies: A review. Food Chemistry, 353, 129431. https://doi.org/10.1016/j.foodchem.2021.129431
12. Askarov, A., Tlevlessova, D., Ostrikov, A., Shambulov, Y., & Kairbayeva, A. (2022). Developing a statistical model for the active ventilation of a grain layer with high moisture content. Eastern-European Journal of Enterprise Technologies, 1(11(115)), 6–14. https://doi.org/10.15587/1729-4061.2022.253038
13. Toleugazykyzy, A., Tlevlessova, D., Samadun, A., & Bekbayeva, R. (2021). Development of parameters for the production of biomass and biohydrogen from brewer’s grain. Eurasian Journal of Physics and Functional Materials, 5(4), 211–217. https://doi.org/10.32523/ejpfm.2021050405
14. Tlevlessova, D., Syzdykova, L., Abdiyeva, K., Kozhakhiyeva, M., Yessengaziyeva, A., Sabit, R., & Bisengalieva, A. (2025). Optimization of melon preservation technology using texture stabilizers and antioxidants. Eastern-European Journal of Enterprise Technologies, 1(11 (133)), 51–62. https://doi.org/10.15587/1729-4061.2025.323610
15. Lorenzo, J. M., Estévez, M., Barba, F. J., Thirumdas, R., Franco, D., & Munekata, P. E. S. (2019). Polyphenols: Bioaccessibility and bioavailability of bioactive components. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds (pp. 309–332). Elsevier. https://doi.org/10.1016/b978-0-12-814174-8.00011-1
16. Firdous, N., Moradinezhad, F., Farooq, F., & Dorostkar, M. (2023). Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: A review. Food Chemistry, 407, 135186. https://doi.org/10.1016/j.foodchem.2022.135186
17. Joseph Bassey, E., Cheng, J.-H., & Sun, D.-W. (2024). Comparative elucidation of bioactive and antioxidant properties of red dragon fruit peel as affected by electromagnetic and conventional drying approaches. Food Chemistry, 439, 138118. https://doi.org/10.1016/j.foodchem.2023.138118
18. Saleh, A. S. M., Wang, P., Wang, N., Yang, S., & Xiao, Z. (2018). Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Critical Reviews in Food Science and Nutrition, 59(2), 207–227. https://doi.org/10.1080/10408398.2017.1363711
19. Xiao, Q. (2021). Coating and Film-Forming Properties. In Food Hydrocolloids (pp. 267–306). Springer Singapore. https://doi.org/10.1007/978-981-16-0320-4_8
20. Semwal, R., Joshi, S. K., Semwal, R. B., & Semwal, D. K. (2021). Health benefits and limitations of rutin - A natural flavonoid with high nutraceutical value. Phytochemistry Letters, 46, 119–128. https://doi.org/10.1016/j.phytol.2021.10.006
21. Koczka, N., Stefanovits-Bányai, É., & Ombódi, A. (2018). Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines (Basel, Switzerland), 5(3), 84. https://doi.org/10.3390/medicines5030084
22. Mármol, I., Sánchez-de-Diego, C., Jiménez-Moreno, N., Ancín-Azpilicueta, C., & Rodríguez-Yoldi, M. J. (2017). Therapeutic applications of rose hips from different Rosa species. International Journal of Molecular Sciences, 18(6), 1137. https://doi.org/10.3390/ijms18061137
23. Hao, J., Wang, Z., Jia, Y., Sun, L., Fu, Z., Zhao, M., Li, Y., Yuan, N., Cong, B., Zhao, L., & Ge, G. (2023). Optimization of ultrasonic-assisted extraction of flavonoids from Lactuca indica L. cv. Mengzao and their antioxidant properties. Frontiers in Nutrition, 10, 1065662. https://doi.org/10.3389/fnut.2023.1065662
24. Vinatoru, M. (2015). Ultrasonically assisted extraction (UAE) of natural products: Some guidelines for good practice and reporting. Ultrasonics Sonochemistry, 25, 94–95. https://doi.org/10.1016/j.ultsonch.2014.10.003
25. Sharma, P., Gujral, H. S., & Singh, B. (2012). Antioxidant activity of barley as affected by extrusion cooking. Food Chemistry, 131(4), 1406–1413. https://doi.org/10.1016/j.foodchem.2011.10.009
26. Zahari, I., Purhagen, J. K., Rayner, M., Ahlström, C., Helstad, A., Landers, M., Müller, J., Eriksson, J., & Östbring, K. (2023). Extrusion of high-moisture meat analogues from hempseed protein concentrate and oat fibre residue. Journal of Food Engineering, 354, 111567. https://doi.org/10.1016/j.jfoodeng.2023.111567
27. Koppel, K., Gibson, M., Alavi, S., & Aldrich, G. (2014). The Effects of Cooking Process and Meat Inclusion on Pet Food Flavor and Texture Characteristics. Animals, 4(2), 254-271. https://doi.org/10.3390/ani4020254
28. Gu, B. J., Kowalski, R. J., Ganjyal, G., Bordoloi, R., & Ganguly, S. (2014). Extrusion technique in food processing and a review on its various technological parameters. Indian Journal of Scientific Research and Technology, 2(1), 1–3. Online Available at: http://www.indjsrt.com
29. Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science & Technology, 99, 284–294. https://doi.org/10.1016/j.tifs.2020.03.012
30. Gondek, E., Kamińska-Dwórznicka, A., Stasiak, M., & Ostrowska-Ligęza, E. (2024). The Concept of Utilizing Waste Generated During the Production of Crispbread for the Production of Corn-Based Snacks. Sustainability, 16(24), 10947. https://doi.org/10.3390/su162410947
31. Paesani, C., Bravo-Núñez, Á., & Gómez, M. (2020). Effect of whole grain corn flour extrusion on gluten-free biscuit characteristics. LWT - Food Science and Technology, 132, 109931. https://doi.org/10.1016/j.lwt.2020.109931
32. Thiranusornkij, L., Thamnarathip, P., Chandrachai, A., Kuakpetoon, D., & Adisakwattana, S. (2018). Physicochemical Properties of Hom Nil (Oryza sativa) Rice Flour as Gluten Free Ingredient in Bread. Foods, 7(10), 159. https://doi.org/10.3390/foods7100159
33. Han, L. Y., Wang, L. P., Tan, B., Liu, Y. X., Liu, M., Tian, X. H., Gao, K., Sun, Y., & Zheng, X. Z. (2019). Comparative study of 7 kinds of cereals on antioxidant activity and in vitro digestion characteristics of extruded cereal powders. Journal of Chinese Cereals and Oils Association, 34(6), 45–52. https://doi.org/10.3969/j.issn.1003-0174.2019.06.009
34. Hossain, A., & Jayadeep, A. (2022). Impact of extrusion on the content and bioaccessibility of fat soluble nutraceuticals, phenolics and antioxidants activity in whole maize. Food Research International, 161, 111821. https://doi.org/10.1016/j.foodres.2022.111821
35. Pichmony, E. K., & Ganjyal, G. M. (2020). Chapter 1 - Basics of extrusion processing. In G. M. Ganjyal (Ed.), Extrusion Cooking (pp. 1–28). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815360-4.00001-8
36. Mangoale, R. M., & Afolayan, A. J. (2020). Comparative Phytochemical Constituents and Antioxidant Activity of Wild and Cultivated Alepidea amatymbica Eckl Zeyh. BioMed Research International, 2020(1). https://doi.org/10.1155/2020/5808624
37. ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy, 13(6), 1580. https://doi.org/10.3390/agronomy13061580
38. Niedzwiecki, A., Roomi, M. W., Kalinovsky, T., & Rath, M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients, 8(9), 552. https://doi.org/10.3390/nu8090552
39. Bié, J., Sepodes, B., Fernandes, P. C. B., & Ribeiro, M. H. L. (2023). Polyphenols in health and disease: Gut microbiota, bioaccessibility, and bioavailability. Compounds, 3(1), 40–72. https://doi.org/10.3390/compounds3010005
40. Mironeasa, S., Coţovanu, I., Mironeasa, C., & Ungureanu-Iuga, M. (2023). A review of the changes produced by extrusion cooking on the bioactive compounds from vegetal sources. Antioxidants, 12(7), 1453. https://doi.org/10.3390/antiox12071453
41. Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., & Restani, P. (2021). Polyphenols and human health: The role of bioavailability. Nutrients, 13(1), 273. https://doi.org/10.3390/nu13010273
42. Rivero Meza, S. L., Louro Massaretto, I., Sinnecker, P., Schmiele, M., Chang, Y. K., Noldin, J. A., & Lanfer Marquez, U. M. (2021). Impact of thermoplastic extrusion process on chemical, nutritional, technological and sensory properties of gluten-free breakfast cereals from pigmented rice. International Journal of Food Science and Technology, 56(7), 3218–3226. https://doi.org/10.1111/ijfs.14893
43. Kratchanova, M., Denev, P., Ciz, M., Lojek, A., & Mihailov, A. (2010). Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta biochimica Polonica, 57(2), 229–234. https://pubmed.ncbi.nlm.nih.gov/20532255/
44. Berga, M., Logviss, K., Lauberte, L., Paulausks, A., & Mohylyuk, V. (2023). Flavonoids in the Spotlight: Bridging the Gap between Physicochemical Properties and Formulation Strategies. Pharmaceuticals, 16(10), 1407. https://doi.org/10.3390/ph16101407
45. Billowria, K., Ali, R., Rangra, N. K., Kumar, R., & Chawla, P. A. (2022). Bioactive Flavonoids: A Comprehensive Review on Pharmacokinetics and Analytical Aspects. Critical Reviews in Analytical Chemistry, 1–15. https://doi.org/10.1080/10408347.2022.2105641
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Assel Izembayeva, Zilikha Moldakulova, Koylanov Kasymkhan, Togzhan Akhlan, Erik Askarbekov, Azhar Kerimbayeva, Asemgul Abdreeva (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.