Sprouted grain-based non-alcoholic beverages: a review

Authors

  • Almaz Moldakarimov Almaty Technological University, Research Institute of Food Technologies, Tole bi 100, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 747 686 86 89 Author https://orcid.org/0000-0001-8309-9285
  • Auelbek Iztayev Almaty Technological University, Research Institute of Food Technologies, Tole bi 100, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 700 216 22 56 Author https://orcid.org/0000-0002-7385-482X
  • Saida Shintassova Almaty Technological University, Faculty of Food Technology, Department of “Technology of bakery products and processing industries”, Tole bi 100, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 777 216 06 03 Author https://orcid.org/0000-0001-6269-4675
  • Gulnur Daribayeva Almaty Technological University, Research Institute of “Food Safety”, Tole bi 100, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 707 670 95 78 Author https://orcid.org/0000-0003-4109-5272
  • Diana Abdraimova Almaty Technological University, Department of “Technology of Bakery Products and Processing Industries”, Tole bi 100, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 777 123 09 66 Author https://orcid.org/0000-0002-2889-8129

DOI:

https://doi.org/10.5219/scifood.25

Keywords:

sprouted grains, beverages, germination, food processing, technology

Abstract

The sprouting process, or germination, activates hydrolytic enzymes that enhance the nutritional profile of grains, making them ideal for health-conscious consumers. Sprouted grain-based soft drinks are a new product category in the food industry, and their popularity is increasing. This review article focuses on the processes and benefits of sprouted grain beverages, highlighting their nutritional enhancements and functional properties. The germination process, which includes soaking, sprouting, and drying, improves the availability of vitamins, minerals, and bioactive compounds while reducing anti-nutritional factors. Optimal conditions for germination, such as temperature and soaking duration, significantly influence the nutritional quality of the final product, with various grains like wheat, barley, and brown rice exhibiting enhanced protein, fiber, and antioxidant levels. Innovative production techniques, including enzyme-assisted extraction and fermentation using beneficial bacteria, further enhance the nutritional profiles of these beverages. However, challenges such as shelf life, flavor stability, and consumer acceptance remain. Sustainable agricultural practices and advancements in food processing technologies are essential for addressing these challenges and meeting the growing consumer demand for healthy, environmentally friendly products. The review emphasizes the potential of sprouted grain beverages as functional foods, offering a rich source of nutrients and health benefits while also addressing the importance of sustainable practices in their production.

Metrics

Metrics Loading ...

References

1. Peñas, E., & Martínez-Villaluenga, C. (2020). Advances in Production, Properties and Applications of Sprouted Seeds. In Foods (Vol. 9, Issue 6, p. 790). MDPI AG. https://doi.org/10.3390/foods9060790

2. Paucar-Menacho, L., Simpalo-López, W., Castillo-Martínez, W., Esquivel-Paredes, L., & Martínez-Villaluenga, C. (2022). Improving Nutritional and Health Benefits of Biscuits by Optimizing Formulations Based on Sprouted Pseudocereal Grains. In Foods (Vol. 11, Issue 11, p. 1533). MDPI AG. https://doi.org/10.3390/foods11111533

3. Aziz, A., Noreen, S., Khalid, W., Mubarik, F., Niazi, M. khan, Koraqi, H., Ali, A., Lima, C. M. G., Alansari, W. S., Eskandrani, A. A., Shamlan, G., & AL-Farga, A. (2022). Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. In Molecules (Vol. 27, Issue 21, p. 7320). MDPI AG. https://doi.org/10.3390/molecules27217320

4. Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. In Nutrients (Vol. 11, Issue 2, p. 421). MDPI AG. https://doi.org/10.3390/nu11020421

5. Maqbool, Z., Khalid, W., Mahum, Khan, A., Azmat, M., Sehrish, A., Zia, S., Koraqi, H., AL‐Farga, A., Aqlan, F., & Khan, K. A. (2023). Cereal sprout‐based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. In Food Science & Nutrition (Vol. 12, Issue 2, pp. 707–721). Wiley. https://doi.org/10.1002/fsn3.3830

6. Darwish, A. M. G., Al‐ Jumayi, H. A. O., & Elhendy, H. A. (2020). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti‐anemic potential in Sprague–Dawley male albino rats. In Cereal Chemistry (Vol. 98, Issue 2, pp. 315–327). Wiley. https://doi.org/10.1002/cche.10366

7. Gadallah, A.-N., Atia, A., El-Khlefa, M., & Badr, A. (2023). Biological and Biochemical Effect of Green Peas and Lentils Sprouts on Rats with Fatty Liver. In Bulletin of the National Nutrition Institute of the Arab Republic of Egypt (Vol. 61, Issue 1, pp. 168–200). Egypts Presidential Specialized Council for Education and Scientific Research. https://doi.org/10.21608/bnni.2023.302245

8. Cid-Gallegos, M. S., Sánchez-Chino, X. M., Juárez Chairez, M. F., Álvarez González, I., Madrigal-Bujaidar, E., & Jiménez-Martínez, C. (2020). Anticarcinogenic Activity of Phenolic Compounds from Sprouted Legumes. In Food Reviews International (Vol. 38, Issue sup1, pp. 18–33). Informa UK Limited. https://doi.org/10.1080/87559129.2020.1840581

9. Majzoobi, M., Wang, Z., Teimouri, S., Pematilleke, N., Brennan, C. S., & Farahnaky, A. (2023). Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. In Foods (Vol. 12, Issue 21, p. 3901). MDPI AG. https://doi.org/10.3390/foods12213901

10. Li, T., Huang, J., Yu, J., Tian, X., Zhang, C., & Pu, H. (2024). Effects of soaking glutinous sorghum grains on physicochemical properties of starch. In International Journal of Biological Macromolecules (Vol. 267, p. 131522). Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2024.131522

11. Bhuvaneshwari, G., Nirmalakumari, A., & Kalaiselvi, S. (2020). Impact of soaking, sprouting on antioxidant and anti-nutritional factors in millet grains. In Journal of Phytology (pp. 62–66). Update Publishing House. https://doi.org/10.25081/jp.2020.v12.6384

12. Munarko, H., Sitanggang, A. B., Kusnandar, F., & Budijanto, S. (2021). Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. In International Journal of Food Science & Technology (Vol. 56, Issue 9, pp. 4540–4548). Wiley. https://doi.org/10.1111/ijfs.15194

13. Gunathunga, C., Senanayake, S., Jayasinghe, M. A., Brennan, C. S., Truong, T., Marapana, U., & Chandrapala, J. (2024). Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. In Journal of Food Composition and Analysis (Vol. 128, p. 106024). Elsevier BV. https://doi.org/10.1016/j.jfca.2024.106024

14. Rico, D., Peñas, E., García, M. del C., Martínez-Villaluenga, C., Rai, D. K., Birsan, R. I., Frias, J., & Martín-Diana, A. B. (2020). Sprouted Barley Flour as a Nutritious and Functional Ingredient. In Foods (Vol. 9, Issue 3, p. 296). MDPI AG. https://doi.org/10.3390/foods9030296

15. Martínez-Villaluenga, C., Salvador-Reyes, R., Frías, J., & Peñas, E. (2025). Sprouted grains as new plant-based protein sources. In Sprouted Grains (pp. 139–178). Elsevier. https://doi.org/10.1016/b978-0-443-23634-1.00004-x

16. Al-Taher, F., & Nemzer, B. (2023). Effect of Germination on Fatty Acid Composition in Cereal Grains. In Foods (Vol. 12, Issue 17, p. 3306). MDPI AG. https://doi.org/10.3390/foods12173306

17. Kim, B., Park, S., Youn, G.-J., Kwak, Y., & Kim, M. (2020). Characteristics of Sunsik, a Cereal-Based Ready-to-Drink Korean Beverage, with Added Germinated Wheat and Herbal Plant Extract. In Foods (Vol. 9, Issue 11, p. 1654). MDPI AG. https://doi.org/10.3390/foods9111654

18. Ikram, A., Saeed, F., Afzaal, M., Imran, A., Niaz, B., Tufail, T., Hussain, M., & Anjum, F. M. (2021). Nutritional and end‐use perspectives of sprouted grains: A comprehensive review. In Food Science & Nutrition (Vol. 9, Issue 8, pp. 4617–4628). Wiley. https://doi.org/10.1002/fsn3.2408

19. Tomé-Sánchez, I., Martín-Diana, A. B., Peñas, E., Bautista-Expósito, S., Frias, J., Rico, D., González-Maillo, L., & Martinez-Villaluenga, C. (2020). Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-Inflammatory Properties of Wheat. In Antioxidants (Vol. 9, Issue 5, p. 426). MDPI AG. https://doi.org/10.3390/antiox9050426

20. Yu, S., Li, C., Wang, X., Herrera-Balandrano, D. D., Johnson, J. B., & Xiang, J. (2024). Optimization of Germination Conditions for Enriched γ-Aminobutyric Acid and Phenolic Compounds of Foxtail Millet Sprouts by Response Surface Methodology. In Foods (Vol. 13, Issue 20, p. 3340). MDPI AG. https://doi.org/10.3390/foods13203340

21. Amitrano, C., Arena, C., De Pascale, S., & De Micco, V. (2020). Light and Low Relative Humidity Increase Antioxidants Content in Mung Bean (Vigna radiata L.) Sprouts. In Plants (Vol. 9, Issue 9, p. 1093). MDPI AG. https://doi.org/10.3390/plants9091093

22. Ali, M., Suthar, P. C., Williams, A., Widderick, M., & Adkins, S. W. (2022). Germination behaviour of. In C. Preston (Ed.), Crop & Pasture Science (Vol. 73, Issue 12, pp. 1395–1405). CSIRO Publishing. https://doi.org/10.1071/cp22074

23. Marchini, M., Marti, A., Folli, C., Prandi, B., Ganino, T., Conte, P., Fadda, C., Mattarozzi, M., & Carini, E. (2021). Sprouting of Sorghum (Sorghum bicolor [L.] Moench): Effect of Drying Treatment on Protein and Starch Features. In Foods (Vol. 10, Issue 2, p. 407). MDPI AG. https://doi.org/10.3390/foods10020407

24. Shen, L., Gao, M., Zhu, Y., Liu, C., Wang, L., Kamruzzaman, M., Liu, C., & Zheng, X. (2021). Microwave drying of germinated brown rice: Correlation of drying characteristics with the final quality. In Innovative Food Science & Emerging Technologies (Vol. 70, p. 102673). Elsevier BV. https://doi.org/10.1016/j.ifset.2021.102673

25. Jribi, S., Gliguem, H., Szalóki-Dorkó, L., Naàr, Z., Kheriji, O., & Debbabi, H. (2022). Impact of drying method on bioactive compounds, functional and thermal properties of durum wheat (Triticum durum) sprouts. In The Annals of the University Dunarea de Jos of Galati. Fascicle VI - Food Technology (Vol. 46, Issue 1, pp. 79–92). Universitatea Dunarea de Jos din Galati. https://doi.org/10.35219/foodtechnology.2022.1.07

26. M.R., M., D. Mridula, Monika Sharma, Anita Kochhar, V. Arun Prasath, Abhipriya Patra, & Pandiselvam, R. (2022). Investigation on thin-layer drying kinetics of sprouted wheat in a tray dryer. In Quality Assurance and Safety of Crops & Foods (Vol. 14, Issue SP1, pp. 12–24). Codon Publications. https://doi.org/10.15586/qas.v14isp1.111

27. Ge, X., Saleh, A. S. M., Jing, L., Zhao, K., Su, C., Zhang, B., Zhang, Q., & Li, W. (2021). Germination and drying induced changes in the composition and content of phenolic compounds in naked barley. In Journal of Food Composition and Analysis (Vol. 95, p. 103594). Elsevier BV. https://doi.org/10.1016/j.jfca.2020.103594

28. Peñaranda, J. D., Bueno, M., Álvarez, F., Pérez, P. D., & Perezábad, L. (2021). Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. In International Journal of Gastronomy and Food Science (Vol. 25, p. 100375). Elsevier BV. https://doi.org/10.1016/j.ijgfs.2021.100375

29. Hidalgo-Fuentes, B., de Jesús-José, E., Cabrera-Hidalgo, A. de J., Sandoval-Castilla, O., Espinosa-Solares, T., González-Reza, Ricardo. M., Zambrano-Zaragoza, M. L., Liceaga, A. M., & Aguilar-Toalá, J. E. (2024). Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. In Foods (Vol. 13, Issue 6, p. 844). MDPI AG. https://doi.org/10.3390/foods13060844

30. Andrade, V. T., & de Castro, R. J. S. (2023). Fermented grain-based beverages as probiotic vehicles and their potential antioxidant and antidiabetic properties. In Biocatalysis and Agricultural Biotechnology (Vol. 53, p. 102873). Elsevier BV. https://doi.org/10.1016/j.bcab.2023.102873

31. Bao, Y.H., Yan, S.F., Xiao, M., Cui, M.M. (2022). Effects of germination on the active components and antioxidant activity of fermented beverage from highland barley. In Journal of Food Safety and Quality (Vol. 13, Issue 13, pp. 4383-4389). Wiley.

32. Aparicio-García, N., Martínez-Villaluenga, C., Frias, J., Crespo Perez, L., Fernández, C. F., Alba, C., Rodríguez, J. M., & Peñas, E. (2021). A Novel Sprouted Oat Fermented Beverage: Evaluation of Safety and Health Benefits for Celiac Individuals. In Nutrients (Vol. 13, Issue 8, p. 2522). MDPI AG. https://doi.org/10.3390/nu13082522

33. Aparicio-García, N., Martínez-Villaluenga, C., Frias, J., & Peñas, E. (2021). Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. In Foods (Vol. 10, Issue 1, p. 139). MDPI AG. https://doi.org/10.3390/foods10010139

34. Sharma, M., Mridula, D., & Gupta, R. K. (2013). Development of sprouted wheat based probiotic beverage. In Journal of Food Science and Technology (Vol. 51, Issue 12, pp. 3926–3933). Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-013-0959-1

35. Mousavi, M., Gharekhani, M., Alirezalu, K., Roufegarinejad, L., & Azadmard‐Damirchi, S. (2022). Production and characterization of nondairy gluten‐free fermented beverage based on buckwheat and lentil. In Food Science & Nutrition (Vol. 11, Issue 5, pp. 2197–2210). Wiley. https://doi.org/10.1002/fsn3.3095

36. Mishra, S., Singh, R., Upadhyay, A., Mishra, S., & Shukla, S. (2023). Emerging trends in processing for cereal and legume-based beverages: A review. In Future Foods (Vol. 8, p. 100257). Elsevier BV. https://doi.org/10.1016/j.fufo.2023.100257

37. Pandiselvam, R., Özaslan, Z. T., Sahni, P., Khanashyam, A. C., Kutlu, N., Yilmaz, M. S., Isleroglu, H., Ramniwas, S., & Rustagi, S. (2024). High pressure homogenization for preservation of liquid foods- Mechanisms, molecular modifications and recent developments. In Future Foods (Vol. 10, p. 100488). Elsevier BV. https://doi.org/10.1016/j.fufo.2024.100488

38. Delmas, H., & Barthe, L. (2015). Ultrasonic mixing, homogenization, and emulsification in food processing and other applications. In Power Ultrasonics (pp. 757–791). Elsevier. https://doi.org/10.1016/b978-1-78242-028-6.00025-9

39. Wei, Q., Chen, J., Dai, T., Ma, F., Deng, L., Ke, Y., Wang, Y., Guo, L., Wang, C., Zhan, C., Ren, C., & Li, T. (2024). High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality. In Foods (Vol. 13, Issue 22, p. 3708). MDPI AG. https://doi.org/10.3390/foods13223708

40. Bendezu-Ccanto, J., Contreras-López, E., & Lozada-Urbano, M. (2023). Development and characterization of an optimized novel drink from three varieties of sprouted quinoa. In African Journal of Food, Agriculture, Nutrition and Development (Vol. 23, Issue 122, pp. 24091–24114). African Journal of Food, Agriculture, Nutrition and Development. https://doi.org/10.18697/ajfand.122.22435

41. Kaur, P. T., Kaur, J. T., Kaur, K. T., & Bohra, J. (2021). Barley-Based Functional Foods. In Cereals and Cereal-Based Foods (pp. 3–18). Apple Academic Press. https://doi.org/10.1201/9781003081975-2

42. Castro, A. G., Ortiz, Fabiola. A. G., Hernández, G. H., & Román-Gutiérrez, A. D. (2024). Analysis of bioactive compounds in lyophilized aqueous extracts of barley sprouts. In Journal of Food Measurement and Characterization (Vol. 18, Issue 7, pp. 5327–5338). Springer Science and Business Media LLC. https://doi.org/10.1007/s11694-024-02569-9

43. Liu, W., Li, S., Han, N., Bian, H., & Song, D. (2022). Effects of germinated and ungerminated grains on the production of non-dairy probiotic-fermented beverages. In Quality Assurance and Safety of Crops & Foods (Vol. 14, Issue 2, pp. 32–39). Codon Publications. https://doi.org/10.15586/qas.v14i2.911

44. Kousar, S., Arshad, M. U., Imran, A., Afzal, M. F., Arshad, M. S., Afzaal, M., Faiza, N., Zia, S., Naeem, U., Khalid, W., Helmi, N., & Hassan, F. A. M. (2023). Nutritional characterization of value-added health mix using germinated barley. In International Journal of Food Properties (Vol. 26, Issue 1, pp. 2667–2678). Informa UK Limited. https://doi.org/10.1080/10942912.2023.2254013

45. Yin, X., Wang, S., Wang, Z., Wen, H., Bai, T., & Zhang, Y. (2024). Effects of Pretreatment Methods on Gamma-Aminobutyric Acid Enrichment and Quality Improvement in Highland Barley Beverages. In Foods (Vol. 13, Issue 24, p. 4053). MDPI AG. https://doi.org/10.3390/foods13244053

46. Salman Al-Kharkhi, M. H., & Ali Mousa, M. (2021). The effect of wheat germination processes on the nutritional parameters of wheat flour. in plant archives (Vol. 21, Issue Suppliment-1, pp. 789–797). Plant Archives. https://doi.org/10.51470/plantarchives.2021.v21.s1.119

47. Aung, T., Kim, B. R., & Kim, M. J. (2022). Optimized Roasting Conditions of Germinated Wheat for a Novel Cereal Beverage and Its Sensory Properties. In Foods (Vol. 11, Issue 3, p. 481). MDPI AG. https://doi.org/10.3390/foods11030481

48. Mridula D., & Sharma, M. (2015). Development of non-dairy probiotic drink utilizing sprouted cereals, legume and soymilk. In LWT - Food Science and Technology (Vol. 62, Issue 1, pp. 482–487). Elsevier BV. https://doi.org/10.1016/j.lwt.2014.07.011

49. Bulatao, R.M., Mabesa, L.B., Mabesa, R.C., & Merca, F.E. (2012). Phytochemical and functional properties of Philippine sprouted brown rice (Oryza sativa L.) and its potential as base ingredient for functional beverages. In Philippine Agricultural Scientist (Vol. 95, Issue 3, pp. 225-235). Philippen Institute of Agricultural Research.

50. Beaulieu, J. C., Reed, S. S., Obando‐Ulloa, J. M., & McClung, A. M. (2020). Green processing protocol for germinating and wet milling brown rice for beverage formulations: Sprouting, milling and gelatinization effects. In Food Science & Nutrition (Vol. 8, Issue 5, pp. 2445–2457). Wiley. https://doi.org/10.1002/fsn3.1534

51. Beaulieu, J. C., Moreau, R. A., Powell, M. J., & Obando-Ulloa, J. M. (2022). Lipid Profiles in Preliminary Germinated Brown Rice Beverages Compared to Non-Germinated Brown and White Rice Beverages. In Foods (Vol. 11, Issue 2, p. 220). MDPI AG. https://doi.org/10.3390/foods11020220

52. Jabeen, R., Jan, N., Naseer, B., Sarangi, P. K., Sridhar, K., Dikkala, P. K., Bhaswant, M., Hussain, S. Z., & Inbaraj, B. S. (2024). Development of Germinated-Brown-Rice-Based Novel Functional Beverage Enriched with γ-Aminobutyric Acid: Nutritional and Bio-Functional Characterization. In Foods (Vol. 13, Issue 8, p. 1282). MDPI AG. https://doi.org/10.3390/foods13081282

53. Baipong, S., Apichartsrangkoon, A., Worametrachanon, S., Tiampakdee, A., Sriwattana, S., Phimolsiripol, Y., Kreungngern, D., & Sintuya, P. (2020). Effects of germinated and nongerminated rice grains on storage stability of pressurized purple rice beverages with Lactobacillus casei 01 supplement. In Journal of Food Processing and Preservation (Vol. 44, Issue 6). Hindawi Limited. https://doi.org/10.1111/jfpp.14442

54. Aparicio-García, N., Martínez-Villaluenga, C., Frias, J., & Peñas, E. (2021). Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. In Food Chemistry (Vol. 338, p. 127972). Elsevier BV. https://doi.org/10.1016/j.foodchem.2020.127972

55. Babolanimogadam, N., Gandomi, H., Akhondzadeh Basti, A., & Taherzadeh, M. J. (2022). Nutritional, functional, and sensorial properties of oat milk produced by single and combined acid, alkaline, α‐amylase, and sprouting treatments. In Food Science & Nutrition (Vol. 11, Issue 5, pp. 2288–2297). Wiley. https://doi.org/10.1002/fsn3.3171

56. Obaroakpo, J. U., Liu, L., Zhang, S., Lu, J., Pang, X., & Lv, J. (2019). α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. In Food Chemistry (Vol. 299, p. 124985). Elsevier BV. https://doi.org/10.1016/j.foodchem.2019.124985

57. Habib, H., Singh, J., Kumar, A., Amin, T., Bhat, T.A., Aziz, N., & Ercişli, S. (2023). Optimization of Functional Beverage Using Germinated Pseudocereals. In Journal of Food Chemistry & Nanotechnology (Vol. 9). United Scientific Group. https://doi.org/10.17756/jfcn.2023-s1-015

58. Brajdes, C., Bahrim, G., Dinica, R., Vizireanu, C. (2013). Phenolics composition and their biochemical stability confirmation by IN VITRO gastrointestinal conditions simulation, for a new functional fermented beverage based on sprouted buckwheat. In Romanian Biotechnological Letters (Vol. 18, Issue 6, pp. 8832-8842). University of Bucharest.

59. Joshi, B.K., Shrestha, R.K., Ghimire, K.H., KC, H.B., GC, A., Shrestha, S., Oli, H. (Eds.). (2023). In book: Millets traditions, science and technology in Nepal. NARC, MoALD and FAO.

60. Moldakarimov, A., Iztayev, A., Muslimov, N., Yakiyayeva, M., Muldabekova, B., Tursunbayeva, S., Dikhanbayeva, F., Shintassova, S., & Dyusembaeva, Z. (2024). Determination of the optimal storage zone of functional beverages based on sprouted grain extracts using mathematical models. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, pp. 1006–1027). HACCP Consulting. https://doi.org/10.5219/2028

61. Xie, A., Dong, Y., Liu, Z., Li, Z., Shao, J., Li, M., & Yue, X. (2023). A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. In Foods (Vol. 12, Issue 21, p. 3952). MDPI AG. https://doi.org/10.3390/foods12213952

Downloads

Published

2025-03-20

Issue

Section

Articles

How to Cite

Sprouted grain-based non-alcoholic beverages: a review. (2025). Scifood, 19(1), 164-175. https://doi.org/10.5219/scifood.25

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.