Mathematical modeling and optimization of the granulation process of biomass-based products with potential applications in the feed and food industries
DOI:
https://doi.org/10.5219/scifood.38Keywords:
modeling, steam pressure, granulation, feed, cattleAbstract
This study aimed to develop and validate a mathematical model for optimizing the granulation process of compound feed for cattle, with a focus on minimizing pellet crumbliness and specific energy consumption. A two-factor central composite design was used to evaluate the effects of feed mixture moisture, granulation temperature, steam pressure, and energy input. The crumbliness index was selected as the primary quality indicator. Experimental data were processed using Microsoft Excel 2010 and Statistica 10, and model adequacy was assessed using Fisher’s criterion. The resulting second-degree polynomial models enabled the prediction of optimal granulation parameters: a moisture content of 18.9%, a steam pressure of 0.31 MPa, and an energy consumption of 8.3 kWh/t, corresponding to a pellet crumbliness of 22%. The application of mathematical modeling proved effective in enhancing product quality by enabling real-time control of key technological factors. These findings support the use of optimized granulation parameters in industrial feed production to improve efficiency and reduce material losses.
References
1. Blagov, D., Mitrofanov, S., Panfyorov, N., Teterin, V., & Pestryakov, E. (2020). Press granulators, technical features, influence of granulation on qualitative characteristics of feed. Kormlenie sel’skohozjajstvennyh zhivotnyh i kormoproizvodstvo (Feeding of agricultural animals and feed production), 9, 57–66. https://doi.org/10.33920/sel-05-2009-06
2. Yessengaliyeva, S. M., Mansurova, M. A., Makhmudov, A. D., & Fedorchenko, L. V. (2021). Current state and development trends of livestock in the Republic of Kazakhstan. Economics: The Strategy and Practice, 16(2), 134–144. https://doi.org/10.51176/1997-9967-2021-2-134-144
3. Stupakova, G. A., Dengina, S. A., Ignatyeva, E. E., Shchipletsova, T. I., & Mitrofanov, D. K. (2021). Feed reference materials in the system of metrological support of agro-industrial complex laboratories. Measurement Standards. Reference Materials, 17(1), 5–20. https://doi.org/10.20915/2687-0886-2021-17-1-5-20
4. Rudoy, D. V., Braginets, S. V., Pakhomov, V. I., & Bakhchevnikov, O. N. (2022). Technology of granulated feed production from an unpolished grain heap. Equipment and Technologies in Animal Husbandry, 3, 48–52. https://doi.org/10.51794/27132064-2022-3-48
5. Alimkulov, Z. H., Zhumalieva, G., Amantayeva, A., Fazylova, K., & Shaulieva, K. (2022). Use of sugar beet production waste in feed additives. The Journal of Almaty Technological University, 2, 11–16. https://doi.org/10.48184/2304-568x-2022-1-11-16
6. Ismael, A., Refat, B., Guevara-Oquendo, V. H., & Yu, P. (2023). Effect of Blend-Pelleted Products Based on Carinata Meal or Canola Meal in Combination with Lignosulfonate on Ruminal Degradation and Fermentation Characteristics, Intestinal Digestion, and Feed Milk Value When Fed to Dairy Cows. Dairy, 4(2), 345–359. https://doi.org/10.3390/dairy4020023
7. Guevara-Oquendo, V. H., Rodriguez Espinosa, M. E., & Yu, P. (2021). Nutrient profiles and pelleting effect of different blended co-products for dairy cows. Animal Feed Science and Technology, 272, 114740. https://doi.org/10.1016/j.anifeedsci.2020.114740
8. Osintseva, D., Osintsev, E., Rebezov, M., Prokhasko, L., Seilgazina, S., Kurmanbayev, S., Nurzhumanova, Z., Yessimbekov, Z., Voytsekhovskiy, V., Maksimiuk, N., & Zalilov, R. (2017). Ozonation and Microwave Treatments as New Pest Management Methods for Grain Crop Cleaning and Disinfection. Annual Research & Review in Biology, 20(5), 1–6. https://doi.org/10.9734/arrb/2017/37741
9. Mammadov, N. (2021). Investigation of the Physical and Mechanical Properties of Feed Grain Processed by the Micronization Method. Bulletin of Science and Practice, 7(8), 97–103. https://doi.org/10.33619/2414-2948/69/13
10. Blagov, D. A., Gizatov, A. Y., Smakuyev, D. R., Kosilov, V. I., Pogodaev, V. A., & Tamaev, S. A. (2020). Overview of feed granulation technology and technical means for its implementation. IOP Conference Series: Earth and Environmental Science, 613(1), 012018. https://doi.org/10.1088/1755-1315/613/1/012018
11. Astanakulov, K., Borotov, A., Tursunov, J., Tursunov, S., & Suzana Ariffin, A. (2024). Dependence of the uniformity of feed mixing in the feed mixing device of the granulation line on the number of paddle shaft revolutions and mixing time. BIO Web of Conferences, 105, 02011. https://doi.org/10.1051/bioconf/202410502011
12. Nielsen, S. K., Mandø, M., & Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. https://doi.org/10.1016/j.powtec.2019.10.051
13. Keysuke Muramatsu, Andréia Massuquetto, Fabiano Dahlke, & Alex Maiorka. (2015). Factors that Affect Pellet Quality: A Review. Journal of Agricultural Science and Technology A, 5(9). https://doi.org/10.17265/2161-6256/2015.09.002
14. Dujmović, M., Šafran, B., Jug, M., Radmanović, K., & Antonović, A. (2022). Biomass Pelletizing Process. Drvna Industrija, 73(1), 99–106. https://doi.org/10.5552/drvind.2022.2139
15. Braginets, S. V., Bakhchevnikov, O. N., & Deev, K. A. (2023). Influence of various parameters on the vegetable raw material pelleting process and pellets quality (review). Agricultural Science Euro-North-East, 24(1), 30–45. https://doi.org/10.30766/2072-9081.2023.24.1.30-45
16. Bektursunova, M., Sidorova, V., Zhiyenbayeva, S., Mashentseva, N., & Assylbekova, S. (2023). Effect of extrusion process parameters on pellet crumbliness in fish feed production. Potravinarstvo Slovak Journal of Food Sciences, 17, 594–605. https://doi.org/10.5219/1886
17. Keysuke Muramatsu, Andréia Massuquetto, Fabiano Dahlke, & Alex Maiorka. (2015). Factors that Affect Pellet Quality: A Review. Journal of Agricultural Science and Technology A, 5(9). https://doi.org/10.17265/2161-6256/2015.09.002
18. Yermukanova, A., Leonid, P., Georgii, S., Zhiyenbayeva, S., & Mrkvicová, E. (2024). Mathematical modelling and optimization of the granulation process of loose compound feed for broilers. Potravinarstvo Slovak Journal of Food Sciences, 18, 20–35. https://doi.org/10.5219/1925
19. Stelte, W., Holm, J. K., Sanadi, A. R., Barsberg, S., Ahrenfeldt, J., & Henriksen, U. B. (2011). A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy, 35(2), 910–918. https://doi.org/10.1016/j.biombioe.2010.11.003
20. Mohammadi Ghasem Abadi, M. H., Moravej, H., Shivazad, M., Karimi Torshizi, M. A., & Kim, W. K. (2019). Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poultry Science, 98(10), 4745–4754. https://doi.org/10.3382/ps/pez190
21. Ungureanu, N., Vladut, V., Voicu, G., Dinca, M.-N., & Zabava, B.-S. (2018). Influence of biomass moisture content on pellet properties - review. In Engineering for Rural Development. 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture. https://doi.org/10.22616/erdev2018.17.n449
22. Blagov, D., Mitrofanov, S., Panfyorov, N., Teterin, V., & Pestryakov, E. (2020). Press granulators, technical features, influence of granulation on qualitative characteristics of feed. Kormlenie sel’skohozjajstvennyh zhivotnyh i kormoproizvodstvo (Feeding of agricultural animals and feed production), 9, 57–66. https://doi.org/10.33920/sel-05-2009-06
23. Teixeira Netto, M. V., Massuquetto, A., Krabbe, E. L., Surek, D., Oliveira, S. G., & Maiorka, A. (2019). Effect of Conditioning Temperature on Pellet Quality, Diet Digestibility, and Broiler Performance. Journal of Applied Poultry Research, 28(4), 963–973. https://doi.org/10.3382/japr/pfz056
24. Samuelsen, T. A., Haustveit, G., & Kousoulaki, K. (2022). The use of tunicate (Ciona intestinalis) as a sustainable protein source in fish feed – Effects on the extrusion process, physical pellet quality and microstructure. Animal Feed Science and Technology, 284, 115193. https://doi.org/10.1016/j.anifeedsci.2021.115193
25. Gageanu, I., Cujbescu, D., Persu, C., Tudor, P., Cardei, P., Matache, M., Vladut, V., Biris, S., Voicea, I., & Ungureanu, N. (2021). Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass. Energies, 14(14), 4104. https://doi.org/10.3390/en14144104
26. Massuquetto, A., Durau, J. F., Schramm, V. G., Netto, M. V. T., Krabbe, E. L., & Maiorka, A. (2018). Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. Journal of Applied Poultry Research, 27(1), 51–58. https://doi.org/10.3382/japr/pfx039
27. Keysuke Muramatsu, Andréia Massuquetto, Fabiano Dahlke, & Alex Maiorka. (2015). Factors that Affect Pellet Quality: A Review. Journal of Agricultural Science and Technology A, 5(9). https://doi.org/10.17265/2161-6256/2015.09.002
28. Froetschner J. Conditioning Controls Quality of Pellet. Feed Tech. 2006;10(6):12-5. Retriewed from: https://vk.cc/chaXTz
29. Segerström, M., & Larsson, S. H. (2014). Clarifying sub-processes in continuous ring die pelletizing through die temperature control. Fuel Processing Technology, 123, 122–126. https://doi.org/10.1016/j.fuproc.2014.02.008
30. Nielsen, S. K., Mandø, M., & Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. https://doi.org/10.1016/j.powtec.2019.10.051
31. Abdollahi, M. R., Ravindran, V., Wester, T. J., Ravindran, G., & Thomas, D. V. (2010). Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize- and sorghum-based diets. Animal Feed Science and Technology, 162(3–4), 106–115. https://doi.org/10.1016/j.anifeedsci.2010.08.017
32. Thomas, M., & van der Poel, A. F. B. (2020). Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Animal Feed Science and Technology, 268, 114612. https://doi.org/10.1016/j.anifeedsci.2020.114612
33. Bulatov, S., Kuchin, N., Simachkova, M., Tareeva, O., & Cheremukhin, A. (2023). Results of evaluation of the efficiency of the working process of feed granulators. E3S Web of Conferences, 390, 06027. https://doi.org/10.1051/e3sconf/202339006027
34. Mani S., Tabil L. G., Sokhansanj S. Evaluation of compaction equations applied to four biomass species. Canadian Biosystems Engineering. 2004;46(3):55-61.
35. Agar D. A., Rudolfsson M., Kalen G., Campargue M., Perez D. D. S., Larsson S. H. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology. 2018;180:47-55. DOI: https://doi.org/10.1016/j.fuproc.2018.08.006
36. Crawford N. C., Ray A. E., Yancey N. A., Nagle N. Evaluating the pelletization of “pure” and blended lignocel lulosic biomass feedstocks. Fuel Processing Technology. 2015;140:46-56. DOI: https://doi.org/10.1016/j.fuproc.2015.08.023
37. Stelte W., Holm J. K., Sanadi A. R., Barsberg S., Ahrenfeldt J., Henriksen U. B. Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel. 2011;90(11):3285-3290. DOI: https://doi.org/10.1016/j.fuel.2011.05.011
38. Whittaker C., Shield I. Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews. 2017;71:1-11. DOI: https://doi.org/10.1016/j.rser.2016.12.119
39. Nielsen, S. K., Mandø, M., & Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. https://doi.org/10.1016/j.powtec.2019.10.051
40. Faborode M. O., O’Callaghan J. R. Theoretical analysis of the compression of fibrous agricultural materials. Journal of Agricultural Engineering Research. 1986;35(3):175-191. DOI: https://doi.org/10.1016/S0021-8634(86)80055-5
41. Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005
42. Lindberg, E. (2005). Influence of protein-rich binders on pellet durability in mixed plant residues. Animal Feed Science and Technology, 120(3–4), 221–231. https://doi.org/10.1016/j.anifeedsci.2005.01.003
43. Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent developments in biomass pelletization – A review. BioResources, 7(3), 4451–4490. https://doi.org/10.15376/biores.7.3.stelte
44. Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648–654. https://doi.org/10.1016/j.biombioe.2005.01.004
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Azhar Amantayeva, Zheksenkul Alimkulov , Nurgul Batyrbayeva, Eva Mrkvicová, Maya Bektursunova, Kyzdygoy Shayliyeva, Kuldariha Fazulova (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.