Mathematical modeling and optimization of the granulation process of biomass-based products with potential applications in the feed and food industries

Authors

  • Azhar Amantayeva Almaty Technological University, Department of Technology of bread products and processing industries Furkat str., 348/4, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 707 728 88 17 Author https://orcid.org/0000-0002-8606-830X
  • Zheksenkul Alimkulov Kazakh Research Institute of Processing and Food Industry, laboratory of feed technology, Y. Gagarin st, 238G, 050060, Almaty Republic of Kazakhstan, Tel.: +7 701 726 18 66 Author https://orcid.org/0000-0002-0427-7192
  • Nurgul Batyrbayeva Almaty Technological University, Department of Technology of bread products and processing industries Furkat str., 348/4, 050012, Almaty, Republic of Kazakhstan, Tel.: +7 707 871 18 38 Author https://orcid.org/0000-0001-8258-5353
  • Eva Mrkvicová Mendel University, Department of Animal Nutrition and Forage Production, Zemědělská str., 1665/1, 61300, Brno, Czech Republic, Tel.: +420 731 454 367 Author https://orcid.org/0000-0002-2504-5024
  • Maya Bektursunova Kazakh Research Institute of Processing and Food Industry, laboratory of feed technology, Y. Gagarin st, 238G, 050060, Almaty Republic of Kazakhstan, Tel.: +7 747 136 47 79 Author https://orcid.org/0000-0002-5105-4864
  • Kyzdygoy Shayliyeva Kazakh Research Institute of Processing and Food Industry, laboratory of feed technology, Y. Gagarin st, 238G, 050060, Almaty Republic of Kazakhstan, Tel.: +707 227 98 88 Author https://orcid.org/0000-0002-5659-2223
  • Kuldariha Fazulova Kazakh Research Institute of Processing and Food Industry, laboratory of feed technology, Y. Gagarin st, 238G, 050060, Almaty Republic of Kazakhstan, Tel.: +707 728 96 36 Author https://orcid.org/0000-0003-1885-5309

DOI:

https://doi.org/10.5219/scifood.38

Keywords:

modeling, steam pressure, granulation, feed, cattle

Abstract

This study aimed to develop and validate a mathematical model for optimizing the granulation process of compound feed for cattle, with a focus on minimizing pellet crumbliness and specific energy consumption. A two-factor central composite design was used to evaluate the effects of feed mixture moisture, granulation temperature, steam pressure, and energy input. The crumbliness index was selected as the primary quality indicator. Experimental data were processed using Microsoft Excel 2010 and Statistica 10, and model adequacy was assessed using Fisher’s criterion. The resulting second-degree polynomial models enabled the prediction of optimal granulation parameters: a moisture content of 18.9%, a steam pressure of 0.31 MPa, and an energy consumption of 8.3 kWh/t, corresponding to a pellet crumbliness of 22%. The application of mathematical modeling proved effective in enhancing product quality by enabling real-time control of key technological factors. These findings support the use of optimized granulation parameters in industrial feed production to improve efficiency and reduce material losses.

References

1. Blagov, D., Mitrofanov, S., Panfyorov, N., Teterin, V., & Pestryakov, E. (2020). Press granulators, technical features, influence of granulation on qualitative characteristics of feed. Kormlenie sel’skohozjajstvennyh zhivotnyh i kormoproizvodstvo (Feeding of agricultural animals and feed production), 9, 57–66. https://doi.org/10.33920/sel-05-2009-06

2. Yessengaliyeva, S. M., Mansurova, M. A., Makhmudov, A. D., & Fedorchenko, L. V. (2021). Current state and development trends of livestock in the Republic of Kazakhstan. Economics: The Strategy and Practice, 16(2), 134–144. https://doi.org/10.51176/1997-9967-2021-2-134-144

3. Stupakova, G. A., Dengina, S. A., Ignatyeva, E. E., Shchipletsova, T. I., & Mitrofanov, D. K. (2021). Feed reference materials in the system of metrological support of agro-industrial complex laboratories. Measurement Standards. Reference Materials, 17(1), 5–20. https://doi.org/10.20915/2687-0886-2021-17-1-5-20

4. Rudoy, D. V., Braginets, S. V., Pakhomov, V. I., & Bakhchevnikov, O. N. (2022). Technology of granulated feed production from an unpolished grain heap. Equipment and Technologies in Animal Husbandry, 3, 48–52. https://doi.org/10.51794/27132064-2022-3-48

5. Alimkulov, Z. H., Zhumalieva, G., Amantayeva, A., Fazylova, K., & Shaulieva, K. (2022). Use of sugar beet production waste in feed additives. The Journal of Almaty Technological University, 2, 11–16. https://doi.org/10.48184/2304-568x-2022-1-11-16

6. Ismael, A., Refat, B., Guevara-Oquendo, V. H., & Yu, P. (2023). Effect of Blend-Pelleted Products Based on Carinata Meal or Canola Meal in Combination with Lignosulfonate on Ruminal Degradation and Fermentation Characteristics, Intestinal Digestion, and Feed Milk Value When Fed to Dairy Cows. Dairy, 4(2), 345–359. https://doi.org/10.3390/dairy4020023

7. Guevara-Oquendo, V. H., Rodriguez Espinosa, M. E., & Yu, P. (2021). Nutrient profiles and pelleting effect of different blended co-products for dairy cows. Animal Feed Science and Technology, 272, 114740. https://doi.org/10.1016/j.anifeedsci.2020.114740

8. Osintseva, D., Osintsev, E., Rebezov, M., Prokhasko, L., Seilgazina, S., Kurmanbayev, S., Nurzhumanova, Z., Yessimbekov, Z., Voytsekhovskiy, V., Maksimiuk, N., & Zalilov, R. (2017). Ozonation and Microwave Treatments as New Pest Management Methods for Grain Crop Cleaning and Disinfection. Annual Research & Review in Biology, 20(5), 1–6. https://doi.org/10.9734/arrb/2017/37741

9. Mammadov, N. (2021). Investigation of the Physical and Mechanical Properties of Feed Grain Processed by the Micronization Method. Bulletin of Science and Practice, 7(8), 97–103. https://doi.org/10.33619/2414-2948/69/13

10. Blagov, D. A., Gizatov, A. Y., Smakuyev, D. R., Kosilov, V. I., Pogodaev, V. A., & Tamaev, S. A. (2020). Overview of feed granulation technology and technical means for its implementation. IOP Conference Series: Earth and Environmental Science, 613(1), 012018. https://doi.org/10.1088/1755-1315/613/1/012018

11. Astanakulov, K., Borotov, A., Tursunov, J., Tursunov, S., & Suzana Ariffin, A. (2024). Dependence of the uniformity of feed mixing in the feed mixing device of the granulation line on the number of paddle shaft revolutions and mixing time. BIO Web of Conferences, 105, 02011. https://doi.org/10.1051/bioconf/202410502011

12. Nielsen, S. K., Mandø, M., & Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. https://doi.org/10.1016/j.powtec.2019.10.051

13. Keysuke Muramatsu, Andréia Massuquetto, Fabiano Dahlke, & Alex Maiorka. (2015). Factors that Affect Pellet Quality: A Review. Journal of Agricultural Science and Technology A, 5(9). https://doi.org/10.17265/2161-6256/2015.09.002

14. Dujmović, M., Šafran, B., Jug, M., Radmanović, K., & Antonović, A. (2022). Biomass Pelletizing Process. Drvna Industrija, 73(1), 99–106. https://doi.org/10.5552/drvind.2022.2139

15. Braginets, S. V., Bakhchevnikov, O. N., & Deev, K. A. (2023). Influence of various parameters on the vegetable raw material pelleting process and pellets quality (review). Agricultural Science Euro-North-East, 24(1), 30–45. https://doi.org/10.30766/2072-9081.2023.24.1.30-45

16. Bektursunova, M., Sidorova, V., Zhiyenbayeva, S., Mashentseva, N., & Assylbekova, S. (2023). Effect of extrusion process parameters on pellet crumbliness in fish feed production. Potravinarstvo Slovak Journal of Food Sciences, 17, 594–605. https://doi.org/10.5219/1886

17. Keysuke Muramatsu, Andréia Massuquetto, Fabiano Dahlke, & Alex Maiorka. (2015). Factors that Affect Pellet Quality: A Review. Journal of Agricultural Science and Technology A, 5(9). https://doi.org/10.17265/2161-6256/2015.09.002

18. Yermukanova, A., Leonid, P., Georgii, S., Zhiyenbayeva, S., & Mrkvicová, E. (2024). Mathematical modelling and optimization of the granulation process of loose compound feed for broilers. Potravinarstvo Slovak Journal of Food Sciences, 18, 20–35. https://doi.org/10.5219/1925

19. Stelte, W., Holm, J. K., Sanadi, A. R., Barsberg, S., Ahrenfeldt, J., & Henriksen, U. B. (2011). A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy, 35(2), 910–918. https://doi.org/10.1016/j.biombioe.2010.11.003

20. Mohammadi Ghasem Abadi, M. H., Moravej, H., Shivazad, M., Karimi Torshizi, M. A., & Kim, W. K. (2019). Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poultry Science, 98(10), 4745–4754. https://doi.org/10.3382/ps/pez190

21. Ungureanu, N., Vladut, V., Voicu, G., Dinca, M.-N., & Zabava, B.-S. (2018). Influence of biomass moisture content on pellet properties - review. In Engineering for Rural Development. 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture. https://doi.org/10.22616/erdev2018.17.n449

22. Blagov, D., Mitrofanov, S., Panfyorov, N., Teterin, V., & Pestryakov, E. (2020). Press granulators, technical features, influence of granulation on qualitative characteristics of feed. Kormlenie sel’skohozjajstvennyh zhivotnyh i kormoproizvodstvo (Feeding of agricultural animals and feed production), 9, 57–66. https://doi.org/10.33920/sel-05-2009-06

23. Teixeira Netto, M. V., Massuquetto, A., Krabbe, E. L., Surek, D., Oliveira, S. G., & Maiorka, A. (2019). Effect of Conditioning Temperature on Pellet Quality, Diet Digestibility, and Broiler Performance. Journal of Applied Poultry Research, 28(4), 963–973. https://doi.org/10.3382/japr/pfz056

24. Samuelsen, T. A., Haustveit, G., & Kousoulaki, K. (2022). The use of tunicate (Ciona intestinalis) as a sustainable protein source in fish feed – Effects on the extrusion process, physical pellet quality and microstructure. Animal Feed Science and Technology, 284, 115193. https://doi.org/10.1016/j.anifeedsci.2021.115193

25. Gageanu, I., Cujbescu, D., Persu, C., Tudor, P., Cardei, P., Matache, M., Vladut, V., Biris, S., Voicea, I., & Ungureanu, N. (2021). Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass. Energies, 14(14), 4104. https://doi.org/10.3390/en14144104

26. Massuquetto, A., Durau, J. F., Schramm, V. G., Netto, M. V. T., Krabbe, E. L., & Maiorka, A. (2018). Influence of feed form and conditioning time on pellet quality, performance and ileal nutrient digestibility in broilers. Journal of Applied Poultry Research, 27(1), 51–58. https://doi.org/10.3382/japr/pfx039

27. Keysuke Muramatsu, Andréia Massuquetto, Fabiano Dahlke, & Alex Maiorka. (2015). Factors that Affect Pellet Quality: A Review. Journal of Agricultural Science and Technology A, 5(9). https://doi.org/10.17265/2161-6256/2015.09.002

28. Froetschner J. Conditioning Controls Quality of Pellet. Feed Tech. 2006;10(6):12-5. Retriewed from: https://vk.cc/chaXTz

29. Segerström, M., & Larsson, S. H. (2014). Clarifying sub-processes in continuous ring die pelletizing through die temperature control. Fuel Processing Technology, 123, 122–126. https://doi.org/10.1016/j.fuproc.2014.02.008

30. Nielsen, S. K., Mandø, M., & Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. https://doi.org/10.1016/j.powtec.2019.10.051

31. Abdollahi, M. R., Ravindran, V., Wester, T. J., Ravindran, G., & Thomas, D. V. (2010). Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize- and sorghum-based diets. Animal Feed Science and Technology, 162(3–4), 106–115. https://doi.org/10.1016/j.anifeedsci.2010.08.017

32. Thomas, M., & van der Poel, A. F. B. (2020). Fundamental factors in feed manufacturing: Towards a unifying conditioning/pelleting framework. Animal Feed Science and Technology, 268, 114612. https://doi.org/10.1016/j.anifeedsci.2020.114612

33. Bulatov, S., Kuchin, N., Simachkova, M., Tareeva, O., & Cheremukhin, A. (2023). Results of evaluation of the efficiency of the working process of feed granulators. E3S Web of Conferences, 390, 06027. https://doi.org/10.1051/e3sconf/202339006027

34. Mani S., Tabil L. G., Sokhansanj S. Evaluation of compaction equations applied to four biomass species. Canadian Biosystems Engineering. 2004;46(3):55-61.

35. Agar D. A., Rudolfsson M., Kalen G., Campargue M., Perez D. D. S., Larsson S. H. A systematic study of ring-die pellet production from forest and agricultural biomass. Fuel Processing Technology. 2018;180:47-55. DOI: https://doi.org/10.1016/j.fuproc.2018.08.006

36. Crawford N. C., Ray A. E., Yancey N. A., Nagle N. Evaluating the pelletization of “pure” and blended lignocel lulosic biomass feedstocks. Fuel Processing Technology. 2015;140:46-56. DOI: https://doi.org/10.1016/j.fuproc.2015.08.023

37. Stelte W., Holm J. K., Sanadi A. R., Barsberg S., Ahrenfeldt J., Henriksen U. B. Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel. 2011;90(11):3285-3290. DOI: https://doi.org/10.1016/j.fuel.2011.05.011

38. Whittaker C., Shield I. Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews. 2017;71:1-11. DOI: https://doi.org/10.1016/j.rser.2016.12.119

39. Nielsen, S. K., Mandø, M., & Rosenørn, A. B. (2020). Review of die design and process parameters in the biomass pelleting process. Powder Technology, 364, 971–985. https://doi.org/10.1016/j.powtec.2019.10.051

40. Faborode M. O., O’Callaghan J. R. Theoretical analysis of the compression of fibrous agricultural materials. Journal of Agricultural Engineering Research. 1986;35(3):175-191. DOI: https://doi.org/10.1016/S0021-8634(86)80055-5

41. Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005

42. Lindberg, E. (2005). Influence of protein-rich binders on pellet durability in mixed plant residues. Animal Feed Science and Technology, 120(3–4), 221–231. https://doi.org/10.1016/j.anifeedsci.2005.01.003

43. Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., & Henriksen, U. B. (2012). Recent developments in biomass pelletization – A review. BioResources, 7(3), 4451–4490. https://doi.org/10.15376/biores.7.3.stelte

44. Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648–654. https://doi.org/10.1016/j.biombioe.2005.01.004

Downloads

Published

2025-07-21

Issue

Section

Articles

How to Cite

Mathematical modeling and optimization of the granulation process of biomass-based products with potential applications in the feed and food industries. (2025). Scifood, 19(1), 412-425. https://doi.org/10.5219/scifood.38

Similar Articles

You may also start an advanced similarity search for this article.