Development and physicochemical evaluation of a biologically active additive based on powders of melons and vegetables

Authors

  • Gulzhan Zhumaliyeva LLP Kazakh Research Institute of Processing and Food Industry, Gagarin Ave., 238 G., 050060, Almaty, Kazakhstan, candidate of technical sciences, associate professor, Tel.: +77017264795 Author https://orcid.org/0000-0002-5028-465X
  • Gulmira Kenenbay LLP Kazakh Research Institute of Processing and Food Industry, Gagarin Ave., 238 G., 050060, Almaty, Kazakhstan, candidate of technical sciences, associate professor, Tel.: +7702320585 Author https://orcid.org/0000-0002-8332-8102
  • Urishbay Chomanov LLP Kazakh Research Institute of Processing and Food Industry, Gagarin Ave., 238 G., 050060, Almaty, Kazakhstan, doctor of technical science, professor, Tel.: + 7017884556 Author https://orcid.org/0000-0002-5594-8216
  • Assiya Shoman LLP Kazakh Research Institute of Processing and Food Industry, Gagarin Ave., 238 G., 050060, Almaty, Kazakhstan, master of technical sciences, Tel.: +77087077726 Author https://orcid.org/0000-0003-2415-8112
  • Ainel Baizakova LLP Kazakh Research Institute of Processing and Food Industry, Gagarin Ave., 238 G., 050060, Almaty, Kazakhstan, master of natural sciences, Tel.: +77753494189 Author https://orcid.org/0009-0000-0236-720X

DOI:

https://doi.org/10.5219/scifood.72

Keywords:

lycopene, tomato powder, watermelon powder, extraction, food additive

Abstract

Tomato and watermelon powders are promising sources of functional ingredients containing lycopene, citrulline, vitamins, and minerals. Due to their antioxidant, anti-inflammatory, and cardioprotective properties, they are considered valuable for the prevention of cardiovascular and oncological diseases and for supporting general health. Lycopene is recognized as one of the most effective natural antioxidants and is actively studied in the context of chronic disease prevention. The objective of this controlled experimental study was to develop a lycopene-enriched dietary supplement (DS) using local varieties of tomatoes and watermelons, combined with auxiliary ingredients to enhance bioavailability and consumer properties. For lycopene extraction, tomatoes and watermelons were subjected to infrared drying at 50–60 °C until a residual moisture of 10–13 %, followed by hexane extraction (raw material: solvent ratio 1:5) at 40 °C for 45 min. The developed supplement included lycopene, pumpkin seed powder, safflower oil, tomato powder, and watermelon powder. Five formulations were tested, with experimental units randomly allocated to recipes for organoleptic evaluation. Sensory analysis identified the formulation with the ratio 1:3:1:8:7 as the most preferred. This composition was further characterized for its chemical profile, including dietary fiber, ash, protein, fat, carbohydrates, vitamins, water- and fat-soluble antioxidants, and trace elements. The results confirmed that the selected formulation combines high antioxidant potential with balanced nutritional composition and acceptable sensory quality. These findings support the feasibility of producing lycopene-based functional foods and dietary supplements from local plant resources in Kazakhstan, thereby contributing to population health and the development of innovative agri-food technologies. This study was conducted within the framework of the project “Development of technology for the production of biologically active supplements of functional purpose with low cost and high quality indicators for the prevention of oncological diseases” (scientific-technical program BR22886613), funded under budget program 267, subprogram 101, Ministry of Agriculture of the Republic of Kazakhstan (2024–2026).

References

1. Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F., & Fernandes, E. (2018). Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 120, 681–699. https://doi.org/10.1016/j.fct.2018.07.060

2. Kulawik, A., Cielecka-Piontek, J., & Zalewski, P. (2023). The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients, 15(17), 3821. https://doi.org/10.3390/nu15173821

3. Bin-Jumah, M. N., Nadeem, M. S., Gilani, S. J., Mubeen, B., Ullah, I., Alzarea, S. I., Ghoneim, M. M., Alshehri, S., Al-Abbasi, F. A., & Kazmi, I. (2022). Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants, 11(2), 232. https://doi.org/10.3390/antiox11020232

4. Saini, R. K., Rengasamy, K. R. R., Mahomoodally, F. M., & Keum, Y.-S. (2020). Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacological Research, 155, 104730. https://doi.org/10.1016/j.phrs.2020.104730

5. Antonuccio, P., Micali, A., Puzzolo, D., Romeo, C., Vermiglio, G., Squadrito, V., Freni, J., Pallio, G., Trichilo, V., Righi, M., Irrera, N., Altavilla, D., Squadrito, F., Marini, H. R., & Minutoli, L. (2020). Nutraceutical Effects of Lycopene in Experimental Varicocele: An “In Vivo” Model to Study Male Infertility. Nutrients, 12(5), 1536. https://doi.org/10.3390/nu12051536

6. Ni, Y., Zhuge, F., Nagashimada, M., Nagata, N., Xu, L., Yamamoto, S., Fuke, N., Ushida, Y., Suganuma, H., Kaneko, S., & Ota, T. (2020). Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice. Free Radical Biology and Medicine, 152, 571–582. https://doi.org/10.1016/j.freeradbiomed.2019.11.036

7. Eslami, E., Carpentieri, S., Pataro, G., & Ferrari, G. (2022). A Comprehensive Overview of Tomato Processing By-Product Valorization by Conventional Methods versus Emerging Technologies. Foods, 12(1), 166. https://doi.org/10.3390/foods12010166

8. Lado, J., Zacarias, J., Rodrigo, M. J., & Zacarías, L. (2019). Visualization of Carotenoid-Storage Structures in Fruits by Transmission Electron Microscopy. In Methods in Molecular Biology (pp. 235–244). Springer US. https://doi.org/10.1007/978-1-4939-9952-1_18

9. Lavecchia, R., & Zuorro, A. (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. European Food Research and Technology, 228(1), 153–158. https://doi.org/10.1007/s00217-008-0897-8

10. Deng, Y., Zhao, S., Yang, X., Hou, F., Fan, L., Wang, W., Xu, E., Cheng, H., Guo, M., & Liu, D. (2021). Evaluation of extraction technologies of lycopene: Hindrance of extraction, effects on isomerization and comparative analysis - A review. Trends in Food Science & Technology, 115, 285–296. https://doi.org/10.1016/j.tifs.2021.06.051

11. Butov, I. (2024). Market volume and tomato consumption in Russia. Kartofel` i ovoshi, 1, 12–16. https://doi.org/10.25630/pav.2024.82.86.001

12. Lisovaya, E. V., Viktorova, E. P., & Sverdlichenko, A. V. (2023). Technology of preparation of tomato pomace using physical methods to extract carotenoids. Izvestiya vuzov. Food Technology, 2-3(392), 58–62. https://doi.org/10.26297/0579-3009.2023.2-3.8

13. Lisovaya, E. V., Viktorova, E. P., & Velikanova, E. V.(2023). Technology of enzymatic processing of tomato pomace to extract lycopene. Izvestiya vuzov. Food Technology, 4(393), 33–38. https://doi.org/10.26297/0579-3009.2023.4.6

14. Imran, M., Ghorat, F., Ul-Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M., Shariati, M. A., Okuskhanova, E., Yessimbekov, Z., Thiruvengadam, M., Hashempur, M. H., & Rebezov, M. (2020). Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants, 9(8), 706. https://doi.org/10.3390/antiox9080706

15. Ashraf, W., Latif, A., Lianfu, Z., & others. (2022). Technological advancement in the processing of lycopene: A review. Food Reviews International, 38(5), 857–883. Taylor & Francis. https://doi.org/10.1080/87559129.2020.1749653

16. Zuorro, A. (2020). Enhanced Lycopene Extraction from Tomato Peels by Optimized Mixed-Polarity Solvent Mixtures. Molecules, 25(9), 2038. https://doi.org/10.3390/molecules25092038

17. Kaur, G., Sandal, A., & Dhillon, N. S. (2017). Lycopene and human health-A review. Agricultural Reviews, 38(04). https://doi.org/10.18805/ag.r-1741

18. Alda, L. M., Gogoasa, I., Bordean, D. M., & others. (2009). Lycopene content of tomatoes and tomato products. Journal of Agroalimentary Processes and Technologies, 15(4), 540–542.

19. Cucu, T., Huvaere, K., Van Den Bergh, M.-A., Vinkx, C., & Van Loco, J. (2012). A Simple and Fast HPLC Method to Determine Lycopene in Foods. Food Analytical Methods, 5(5), 1221–1228. https://doi.org/10.1007/s12161-011-9354-6

20. Khalid, M., Saeed-ur-Rahman, Bilal, M., Iqbal, H. M. N., & Huang, D. (2019). Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatalysis and Agricultural Biotechnology, 17, 399–407. https://doi.org/10.1016/j.bcab.2018.11.027

21. Martínez-Hernández, G. B., Castillejo, N., & Artés-Hernández, F. (2019). Effect of fresh–cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biology and Technology, 156, 110925. https://doi.org/10.1016/j.postharvbio.2019.05.026

22. Stajčić, S., Ćetković, G., Čanadanović-Brunet, J., Djilas, S., Mandić, A., & Četojević-Simin, D. (2015). Tomato waste: Carotenoids content, antioxidant and cell growth activities. Food Chemistry, 172, 225–232. https://doi.org/10.1016/j.foodchem.2014.09.069

23. Papaioannou, E. H., Liakopoulou-Kyriakides, M., & Karabelas, A. J. (2015). Natural Origin Lycopene and Its “Green” Downstream Processing. Critical Reviews in Food Science and Nutrition, 56(4), 686–709. https://doi.org/10.1080/10408398.2013.817381

24. Durante, M., Lenucci, M. S., Marrese, P. P., Rizzi, V., De Caroli, M., Piro, G., Fini, P., Russo, G. L., & Mita, G. (2016). α-Cyclodextrin encapsulation of supercritical CO2 extracted oleoresins from different plant matrices: A stability study. Food Chemistry, 199, 684–693. https://doi.org/10.1016/j.foodchem.2015.12.073

25. Murakami, K., Honda, M., Wahyudiono, Kanda, H., & Goto, M. (2017). Thermal isomerization of (all-E)-lycopene and separation of the Z-isomers by using a low boiling solvent: Dimethyl ether. Separation Science and Technology, 52(16), 2573–2582. https://doi.org/10.1080/01496395.2017.1374412

26. Kehili, M., Kammlott, M., Choura, S., Zammel, A., Zetzl, C., Smirnova, I., Allouche, N., & Sayadi, S. (2017). Supercritical CO 2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food and Bioproducts Processing, 102, 340–349. https://doi.org/10.1016/j.fbp.2017.02.002

27. Strati, I. F., Gogou, E., & Oreopoulou, V. (2015). Enzyme and high-pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing, 94, 668–674. Elsevier. https://doi.org/10.1016/j.fbp.2014.09.012

28. Strati, I. F., Gogou, E., & Oreopoulou, V. (2015). Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing, 94, 668–674. https://doi.org/10.1016/j.fbp.2014.09.012

29. Lisovaya, E. V., Ugryumova, T. I., Borodikhin, A. S., & others. (2024). Effective technological regimes for lycopene extraction from tomato pomace. Izvestiya vuzov. Food Technology, 4(397), 43–47. https://doi.org/10.26297/0579-3009.2024.4.7 (In Russ.).

30. Honda, M., Kageyama, H., Hibino, T., Zhang, Y., Ichihashi, K., Fukaya, T., & Goto, M. (2019). Impact of global traditional seasonings on thermal Z-isomerization of (all-E)-lycopene in tomato puree. LWT, 116, 108565. https://doi.org/10.1016/j.lwt.2019.108565

31. Anumudu, C., Onyeaka, H., Ekwueme, C., Hart, A., Isaac-Bamgboye, F., & Miri, T. (2024). Advances in the Application of Infrared in Food Processing for Improved Food Quality and Microbial Inactivation. Foods, 13(24), 4001. https://doi.org/10.3390/foods13244001

32. Lin, F.-J., Wei, X.-L., Liu, H.-Y., Li, H., Xia, Y., Wu, D.-T., Zhang, P.-Z., Gandhi, G. R., Hua-Bin Li, & Gan, R.-Y. (2021). State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science & Technology, 109, 126–138. https://doi.org/10.1016/j.tifs.2021.01.030

33. Tran, D. T., Nguyen, L. T. H., Nguyen, C. N., Hertog, M. L. A. T. M., Nicolaï, B., & Picha, D. (2023). Optimization of Lycopene Extraction from Tomato Pomace and Effect of Extract on Oxidative Stability of Peanut Oil. Polish Journal of Food and Nutrition Sciences, 205–213. https://doi.org/10.31883/pjfns/168233

34. Shafe, M. O., Gumede, N. M., Nyakudya, T. T., & Chivandi, E. (2024). Lycopene: A Potent Antioxidant with Multiple Health Benefits. Journal of Nutrition and Metabolism, 2024(1). https://doi.org/10.1155/2024/6252426

35. Campos-Lozada, G., Pérez-Marroquín, X. A., Callejas-Quijada, G., Campos-Montiel, R. G., Morales-Peñaloza, A., León-López, A., & Aguirre-Álvarez, G. (2022). The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from Tomato (Solanum lycopersicum) Waste. Antioxidants, 11(7), 1404. https://doi.org/10.3390/antiox11071404

36. Batool, M., Ranjha, M. M. A. N., Roobab, U., Manzoor, M. F., Farooq, U., Nadeem, H. R., Nadeem, M., Kanwal, R., AbdElgawad, H., Al Jaouni, S. K., Selim, S., & Ibrahim, S. A. (2022). Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants, 11(11), 1394. https://doi.org/10.3390/plants11111394

37. Syed, Q. A. (2019). Nutritional and Therapeutic Importance of the Pumpkin Seeds. Biomedical Journal of Scientific & Technical Research, 21(2). https://doi.org/10.26717/bjstr.2019.21.003586

38. Collins, E. J., Bowyer, C., Tsouza, A., & Chopra, M. (2022). Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology, 11(2), 239. https://doi.org/10.3390/biology11020239

39. Visioli, F., Riso, P., Grande, S., Galli, C., & Porrini, M. (2003). Protective activity of tomato products on in vivo markers of lipid oxidation. European Journal of Nutrition, 42(4), 201–206. https://doi.org/10.1007/s00394-003-0415-5

40. Gu, I., Balogun, O., Brownmiller, C., Kang, H. W., & Lee, S.-O. (2023). Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model. Applied Sciences, 13(8), 4882. https://doi.org/10.3390/app13084882

41. Marzocco, S., Singla, R. K., & Capasso, A. (2021). Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules, 26(17), 5333. https://doi.org/10.3390/molecules26175333

42. National Institutes of Health (NIH), Office of Dietary Supplements (ODS). (n.d.). Vitamin and mineral fact sheets. National Institutes of Health. Retrieved from https://ods.od.nih.gov/

43. Crupi, P., Faienza, M. F., Naeem, M. Y., Corbo, F., Clodoveo, M. L., & Muraglia, M. (2023). Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants, 12(5), 1069. https://doi.org/10.3390/antiox12051069

44. Parveen, B., Rajinikanth, V., & Narayanan, M. (2025). Natural plant antioxidants for food preservation and emerging trends in nutraceutical applications. Discover Applied Sciences, 7(8). https://doi.org/10.1007/s42452-025-07464-6

Downloads

Published

2025-10-28

How to Cite

Development and physicochemical evaluation of a biologically active additive based on powders of melons and vegetables. (2025). Scifood, 19, 580-595. https://doi.org/10.5219/scifood.72

Similar Articles

1-10 of 33

You may also start an advanced similarity search for this article.