Micro- and nanoplastics in food contact materials: a comprehensive synthesis of release mechanisms, analytical evidence, and risk implications
DOI:
https://doi.org/10.5219/scifood.80Keywords:
microplastics, nanoplastics, food contact materials, migration, packaging, analytical methods, EFSA, risk assessmentAbstract
Micro- and nanoplastics (MNPs) have emerged as a critical group of contaminants in food systems, particularly due to their release from food contact materials (FCMs). In 2025, the European Food Safety Authority (EFSA) published an extensive literature review analysing the mechanisms, extent, and implications of MNP release from common packaging polymers. Polymers such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and polylactic acid (PLA) can emit micro- and nanosized particles during production, handling, heating, or storage. Physicochemical degradation processes, including thermo-oxidation, photo-oxidation, hydrolysis, and mechanical abrasion, mainly drive the release. Analytical studies have identified significant variability in particle detection using methods such as Fourier-transform infrared (FTIR) and Raman microspectroscopy, pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS), and laser direct infrared (LDIR) imaging. Reported concentrations typically range from 10² to 10⁶ particles per litre, depending on polymer type, exposure time, and temperature. Despite technological progress, a lack of harmonised protocols, certified reference materials, and unified reporting metrics continues to limit comparability among studies. Although the toxicological significance of MNP exposure from packaging is not yet fully understood, cumulative intake through packaging, environmental, and dietary sources remains an emerging concern. EFSA emphasised the urgent need for method harmonisation, development of reference materials, and comprehensive risk assessment integrating analytical, exposure, and toxicological data.
References
1. EFSA Panel on Contaminants in the Food Chain (CONTAM). (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood [JB]. EFSA Journal, 14(6). https://doi.org/10.2903/j.efsa.2016.4501
2. EFSA Scientific Committee, More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., Hernández‐Jerez, A., Hougaard Bennekou, S., Koutsoumanis, K., Lambré, C., Machera, K., Naegeli, H., Nielsen, S., Schlatter, J., Schrenk, D., Silano (deceased), V., Turck, D., Younes, M., Castenmiller, J., … Schoonjans, R. (2021). Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health [JB]. EFSA Journal, 19(8). https://doi.org/10.2903/j.efsa.2021.6768
3. Winkler, A., Santo, N., Ortenzi, M. A., Bolzoni, E., Bacchetta, R., & Tremolada, P. (2019). Does mechanical stress cause microplastic release from plastic water bottles? Water Research, 166, 115082. https://doi.org/10.1016/j.watres.2019.115082
4. Weisser, J., Beer, I., Hufnagl, B., Hofmann, T., Lohninger, H., Ivleva, N. P., & Glas, K. (2021). From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water, 13(6), 841. https://doi.org/10.3390/w13060841
5. Giese, A., Kerpen, J., Weber, F., & Prediger, J. (2021). A Preliminary Study of Microplastic Abrasion from the Screw Cap System of Reusable Plastic Bottles by Raman Microspectroscopy. ACS ES&T Water, 1(6), 1363–1368. https://doi.org/10.1021/acsestwater.0c00238
6. Gerhard, M. N., Schymanski, D., Ebner, I., Esselen, M., Stahl, T., & Humpf, H.-U. (2021). Can the presence of additives result in false positive errors for microplastics in infant feeding bottles? Food Additives & Contaminants: Part A, 39(1), 185–197. https://doi.org/10.1080/19440049.2021.1989498
7. Hu, J., Xu, X., Song, Y., Liu, W., Zhu, J., Jin, H., & Meng, Z. (2022). Microplastics in Widely Used Polypropylene-Made Food Containers. Toxics, 10(12), 762. https://doi.org/10.3390/toxics10120762
8. Liu, G., Wang, J., Wang, M., Ying, R., Li, X., Hu, Z., & Zhang, Y. (2022). Disposable plastic materials release microplastics and harmful substances in hot water. Science of The Total Environment, 818, 151685. https://doi.org/10.1016/j.scitotenv.2021.151685
9. Gambino, I., Malitesta, C., Bagordo, F., Grassi, T., Panico, A., Fraissinet, S., De Donno, A., & De Benedetto, G. E. (2023). Characterization of microplastics in water bottled in different packaging by Raman spectroscopy. Environmental Science: Water Research & Technology, 9(12), 3391–3397. https://doi.org/10.1039/d3ew00197k
10. Nacaratte, F., Cuevas, P., Becerra-Herrera, M., & Manzano, C. A. (2023). Early screening of suspected microplastics in bottled water in the Santiago Metropolitan Region of Chile. Environmental Pollution, 334, 122118. https://doi.org/10.1016/j.envpol.2023.122118
11. Yang, L., Li, D., Shi, Y., Hill, C., Pilliadugula, R., Page, L., Wang, J. J., Boland, J. J., & Xiao, L. (2023). High levels of microparticles release from biodegradable polylactic acid paper cups compared with polyethylene-lined cups. Chemical Engineering Journal, 468, 143620. https://doi.org/10.1016/j.cej.2023.143620
12. Zhang, T., Hu, J.-L., Duan, Y., Chen, S., Li, D., Dong, B., Mo, M.-Z., Wang, J., Zheng, J.-G., Zhong, H.-N., & Lin, Q.-B. (2023). Identification and characterisation of microplastics released from plastic-coated paper cups using micro-Raman spectroscopy. Food Control, 153, 109901. https://doi.org/10.1016/j.foodcont.2023.109901
13. Altunışık, A. (2023). Prevalence of microplastics in commercially sold soft drinks and human risk assessment. Journal of Environmental Management, 336, 117720. https://doi.org/10.1016/j.jenvman.2023.117720
14. Guo, X., Dai, H., Gukowsky, J., Tan, X., & He, L. (2023). Detection and quantification of microplastics in commercially bottled edible oil. Food Packaging and Shelf Life, 38, 101122. https://doi.org/10.1016/j.fpsl.2023.101122
15. Akbulut, S., Akman, P. K., Tornuk, F., & Yetim, H. (2024). Microplastic Release from Single-Use Plastic Beverage Cups. Foods, 13(10), 1564. https://doi.org/10.3390/foods13101564
16. Álvarez-Fernández, C., Matikainen, E., McGuigan, K. G., Andrade, J. M., & Marugán, J. (2024). Evaluation of microplastics release from solar water disinfection poly(ethylene terephthalate) and polypropylene containers. Journal of Hazardous Materials, 465, 133179. https://doi.org/10.1016/j.jhazmat.2023.133179
17. Fang, C., Yu, J., Gopalan, S., & Naidu, R. (2024). Investigating microplastics and nanoplastics released from food bag ziplock using SEM and Raman imaging. Nano Express, 5(2), 025025. https://doi.org/10.1088/2632-959x/ad53ea
18. Guo, X., Dai, H., & He, L. (2024). Migration testing of microplastics from selected water and food containers by Raman microscopy. Journal of Hazardous Materials, 462, 132798. https://doi.org/10.1016/j.jhazmat.2023.132798
19. Pallavera, M., Sanvito, T., Cremonesi, L., Artoni, C., Falqui, A., & Potenza, M. A. C. (2024). Evidence of Sub‐Micrometric Plastic Release When Heating Food Containers Based on Light Scattering Measurements. Particle & Particle Systems Characterization, 41(12). https://doi.org/10.1002/ppsc.202400029
20. Xuan, Y., Chen, Y., Song, X., Xu, J., & Chen, J. (2025). Releasing characteristics and risk of micro/nanoplastics from Chinese herbal decoction packages under daily usage scenarios. Journal of Hazardous Materials, 483, 136676. https://doi.org/10.1016/j.jhazmat.2024.136676
21. Zhao, L., Gu, Y., Cai, H., Xu, X., Yu, J., Li, J., Shen, Y., Zhu, L., Jin, Y., Zhang, M., Dong, R., & Chen, B. (2025). Microplastics release from infant feeding bottles and milk storage bags. Food Control, 168, 110921. https://doi.org/10.1016/j.foodcont.2024.110921
22. Zhou, P., Zhang, K., Zhang, T., Cen, C., Zheng, Y., & Shuai, Y. (2024). Release Characteristics of Small-Sized Microplastics in Bottled Drinks Using Flow Cytometry Sorting and Nile Red Staining. Water, 16(13), 1898. https://doi.org/10.3390/w16131898
23. Habib, R. Z., Kindi, R. A., Salem, F. A., Kittaneh, W. F., Poulose, V., Iftikhar, S. H., Mourad, A.-H. I., & Thiemann, T. (2022). Microplastic Contamination of Chicken Meat and Fish through Plastic Cutting Boards. International Journal of Environmental Research and Public Health, 19(20), 13442. https://doi.org/10.3390/ijerph192013442
24. Habib, R. Z., Poulose, V., Alsaidi, R., al Kendi, R., Iftikhar, S. H., Mourad, A.-H. I., Kittaneh, W. F., & Thiemann, T. (2022). Plastic cutting boards as a source of microplastics in meat. Food Additives & Contaminants: Part A, 39(3), 609–619. https://doi.org/10.1080/19440049.2021.2017002
25. Schymanski, D., Humpf, H.-U., & Fürst, P. (2020). Determination of particle abrasion through milling with five different salt grinders – a preliminary study by micro-Raman spectroscopy with efforts towards improved quality control of the analytical methods. Food Additives & Contaminants: Part A, 37(8), 1238–1252. https://doi.org/10.1080/19440049.2020.1748724
26. Kim, S., Jo, E. H., & Choi, S. (2022). Microplastic release from damaged commercial teabags. Membrane and Water Treatment, 13(1), 21–28. https://doi.org/10.12989/MWT.2022.13.1.021
27. Banaei, G., Abass, D., Tavakolpournegari, A., Martín-Pérez, J., Gutiérrez, J., Peng, G., Reemtsma, T., Marcos, R., Hernández, A., & García-Rodríguez, A. (2024). Teabag-derived micro/nanoplastics (true-to-life MNPLs) as a surrogate for real-life exposure scenarios. Chemosphere, 368, 143736. https://doi.org/10.1016/j.chemosphere.2024.143736
28. Banaei, G., García-Rodríguez, A., Tavakolpournegari, A., Martín-Pérez, J., Villacorta, A., Marcos, R., & Hernández, A. (2023). The release of polylactic acid nanoplastics (PLA-NPLs) from commercial teabags. Obtention, characterization, and hazard effects of true-to-life PLA-NPLs. Journal of Hazardous Materials, 458, 131899. https://doi.org/10.1016/j.jhazmat.2023.131899
29. Busse, K., Ebner, I., Humpf, H.-U., Ivleva, N., Kaeppler, A., Oßmann, B. E., & Schymanski, D. (2020). Comment on “Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea.” Environmental Science & Technology, 54(21), 14134–14135. https://doi.org/10.1021/acs.est.0c03182
30. BfR (German Federal Institute for Risk Assessment). (2025). BfR assesses study on tea bags and microplastic particles: No health impairments expected based on current knowledge. Communication 029/2025. Available at https://www.bfr.bund.de/en/notification/bfr-assesses-study-on-tea-bags-and-microplastic-particles/ (Accessed: 5 Oct 2025).
31. Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., Maisuria, V. B., & Tufenkji, N. (2019). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental Science & Technology, 53(21), 12300–12310. https://doi.org/10.1021/acs.est.9b02540
32. Oßmann, B. E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S. H., & Dicke, W. (2018). Small-sized microplastics and pigmented particles in bottled mineral water. Water Research, 141, 307–316. https://doi.org/10.1016/j.watres.2018.05.027
33. Zangmeister, C. D., Radney, J. G., Benkstein, K. D., & Kalanyan, B. (2022). Common Single-Use Consumer Plastic Products Release Trillions of Sub-100 nm Nanoparticles per Liter into Water during Normal Use. Environmental Science & Technology, 56(9), 5448–5455. https://doi.org/10.1021/acs.est.1c06768
34. Duda, A., & Petka, K. (2025). The Presence of Micro- and Nanoplastics in Food and the Estimation of the Amount Consumed Depending on Dietary Patterns. Molecules, 30(18), 3666. https://doi.org/10.3390/molecules30183666
35. He, Y.-J., Qin, Y., Zhang, T.-L., Zhu, Y.-Y., Wang, Z.-J., Zhou, Z.-S., Xie, T.-Z., & Luo, X.-D. (2021). Migration of (non-) intentionally added substances and microplastics from microwavable plastic food containers. Journal of Hazardous Materials, 417, 126074. https://doi.org/10.1016/j.jhazmat.2021.126074
36. Hossain, M. B., Yu, J., Banik, P., Noman, Md. A., Nur, A.-A. U., Haque, Md. R., Rahman, Md. M., Albeshr, M. F., & Arai, T. (2023). First evidence of microplastics and their characterization in bottled drinking water from a developing country. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1232931
37. Yang, C., Xie, J., Gowen, A., & Xu, J.-L. (2024). Machine learning driven methodology for enhanced nylon microplastic detection and characterization. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54003-1
38. Yousefi, A., Attar, H. M., & Yousefi, Z. (2024). Investigating the release of microplastics from tea bags into tea drinks and human exposure assessment. Environmental Health Engineering and Management, 11(3), 337–347. https://doi.org/10.34172/ehem.2024.33
39. Mikac, L., Csáki, A., Zentai, B., Tolić, A., Ivanda, M., & Veres, M. (2024). Effects of Gamma Irradiation on Polyethylene Terephthalate and Detection of Microplastic Particles Down to 1 μm. Langmuir, 40(21), 10916–10924. https://doi.org/10.1021/acs.langmuir.4c00252
40. Hagelskjær, O., Hagelskjær, F., Margenat, H., Yakovenko, N., Sonke, J. E., & Le Roux, G. (2025). Majority of potable water microplastics are smaller than the 20 μm EU methodology limit for consumable water quality. PLOS Water, 4(1), e0000250. https://doi.org/10.1371/journal.pwat.0000250
41. Yadav, H., Khan, M. R. H., Quadir, M., Rusch, K. A., Mondal, P. P., Orr, M., Xu, E. G., & Iskander, S. M. (2023). Cutting Boards: An Overlooked Source of Microplastics in Human Food? Environmental Science & Technology, 57(22), 8225–8235. https://doi.org/10.1021/acs.est.3c00924
42. Winkler, A., Santo, N., Tremolada, P., Parolini, M., Pasini, V., Ortenzi, M. A., & Bacchetta, R. (2020). Microplastic Release from Plastic Bottles - Comparison of Two Analytical Methodologies (SEM-EDX and μ-FTIR). In Springer Water (pp. 255–261). Springer International Publishing. https://doi.org/10.1007/978-3-030-45909-3_40
43. European Food Safety Authority (EFSA), Barthélémy, E., Cariou, R., Castle, L., Crebelli, R., Di Consiglio, E., Dumas, T. H., Franz, R., Grob, K., Lambré, C., Lampi, E., Milana, M. R., Pronk, I. M. G. M., Rivière, G., da Silva, M., Tietz, T., Tsochatzis, E., & Van Hoeck, E. (2025). Literature review on micro‐ and nanoplastic release from food contact materials during their use [JB]. EFSA Supporting Publications, 22(10). https://doi.org/10.2903/sp.efsa.2025.EN-9733
44. Przygoda-Kuś, P., Kosiorowska, K. E., Urbanek, A. K., & Mirończuk, A. M. (2025). Current Approaches to Microplastics Detection and Plastic Biodegradation. Molecules, 30(11), 2462. https://doi.org/10.3390/molecules30112462
45. Vogel, A., Tentschert, J., Pieters, R., Bennet, F., Dirven, H., van den Berg, A., Lenssen, E., Rietdijk, M., Broßell, D., & Haase, A. (2024). Towards a risk assessment framework for micro- and nanoplastic particles for human health. Particle and Fibre Toxicology, 21(1). https://doi.org/10.1186/s12989-024-00602-9
46. Wang, J., Lee, J., Kwon, E. E., & Jeong, S. (2023). Quantitative analysis of polystyrene microplastic and styrene monomer released from plastic food containers. Heliyon, 9(5), e15787. https://doi.org/10.1016/j.heliyon.2023.e15787
47. Wang, L., Gao, J., Wu, W.-M., Luo, J., Bank, M. S., Koelmans, A. A., Boland, J. J., & Hou, D. (2024). Rapid Generation of Microplastics and Plastic-Derived Dissolved Organic Matter from Food Packaging Films under Simulated Aging Conditions. Environmental Science & Technology, 58(45), 20147–20159. https://doi.org/10.1021/acs.est.4c05504
48. Wang, Y., Wang, Z., Lu, X., Zhang, H., & Jia, Z. (2023). Simulation and Characterization of Nanoplastic Dissolution under Different Food Consumption Scenarios. Toxics, 11(7), 550. https://doi.org/10.3390/toxics11070550
49. Caponigro, V., Di Fiore, C., Carriera, F., Iannone, A., Malinconico, A., Campiglia, P., Crescenzi, C., & Avino, P. (2025). Evaluating microplastic emission from takeaway containers: A Micro-Raman approach across diverse exposure scenarios. Food Chemistry, 464, 141716. https://doi.org/10.1016/j.foodchem.2024.141716
50. Chen, H., Xu, L., Yu, K., Wei, F., & Zhang, M. (2023). Release of microplastics from disposable cups in daily use. Science of The Total Environment, 854, 158606. https://doi.org/10.1016/j.scitotenv.2022.158606
51. Chen, Y., Xu, H., Luo, Y., Ding, Y., Huang, J., Wu, H., Han, J., Du, L., Kang, A., Jia, M., Xiong, W., & Yang, Z. (2023). Plastic bottles for chilled carbonated beverages as a source of microplastics and nanoplastics. Water Research, 242, 120243. https://doi.org/10.1016/j.watres.2023.120243
52. Crosta, A., Parolini, M., & De Felice, B. (2023). Microplastics Contamination in Nonalcoholic Beverages from the Italian Market. International Journal of Environmental Research and Public Health, 20(5), 4122. https://doi.org/10.3390/ijerph20054122
53. Dessì, C., Okoffo, E. D., O’Brien, J. W., Gallen, M., Samanipour, S., Kaserzon, S., Rauert, C., Wang, X., & Thomas, K. V. (2021). Plastics contamination of store-bought rice. Journal of Hazardous Materials, 416, 125778. https://doi.org/10.1016/j.jhazmat.2021.125778
54. Ranjan, V. P., Joseph, A., & Goel, S. (2021). Microplastics and other harmful substances released from disposable paper cups into hot water. Journal of Hazardous Materials, 404, 124118. https://doi.org/10.1016/j.jhazmat.2020.124118
55. Vega-Herrera, A., Garcia-Torné, M., Borrell-Diaz, X., Abad, E., Llorca, M., Villanueva, C. M., & Farré, M. (2023). Exposure to micro(nano)plastics polymers in water stored in single-use plastic bottles. Chemosphere, 343, 140106. https://doi.org/10.1016/j.chemosphere.2023.140106
56. Qian, N., Gao, X., Lang, X., Deng, H., Bratu, T. M., Chen, Q., Stapleton, P., Yan, B., & Min, W. (2024). Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proceedings of the National Academy of Sciences, 121(3). https://doi.org/10.1073/pnas.2300582121
57. Yang, W., Li, Y., Wang, X., Zheng, Y., Li, D., Zhao, X., Yang, X., & Shan, J. (2024). One-stop quantification of microplastics and nanoparticles based on meniscus self-assembly technology. Science of The Total Environment, 949, 174946. https://doi.org/10.1016/j.scitotenv.2024.174946
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jozef Čapla, Peter Zajác, Jozef Čurlej, Martina Fiksleová, Simona Kunová (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.







