Microbiological changes in craft hard cheeses from raw goat milk during ripening with the use of mites Acarus siro
DOI:
https://doi.org/10.5219/scifood.26Keywords:
Alpine, yoghurt bacteria, moulds, yeast, mites Acarus siro, Acarus siro, hard cheeseAbstract
The nutritional and biological values of craft hard cheeses made from raw goat milk, in combination with their unique flavor characteristics, increase consumer demand and expand their range on the market. Production of such cheeses is concentrated on small farms and is becoming increasingly common in Ukraine. Ripening of such hard cheeses made from raw goat milk is provided by a significant species diversity of their biome, particularly bacteria, molds, yeasts, and mites, which requires a quality and safety assessment of such cheeses at different ripening periods. Microbiological indicators of Alpine and Yoghurt hard cheeses made from raw goat milk were determined during the study. A study was carried out using traditional methods of microbial analysis, as well as MALDI-TOF technology. Alpine cheese was characterized by relative stability in QMAFAnM at 7 days, 6, and 12 months. In Alpine cheese, the maximum amount of yeast was detected at 7 days of age, and the maximum amount of moulds was detected at 6 months of ripening. Lactic acid bacteria, in particular, Lactococcus lactis and Lactobacillus plantarum, formed the microbiome basis of Alpine cheese during all ripening periods. Staphylococcus simulans, S. equorum, Enterococcus faecalis, E. durans, Escherichia coli and Bacillus cereus were isolated in small amounts from Alpine cheese. The number of QMAFAnM in Yoghurt cheese increased throughout the ripening period, while the number of yeasts and moulds reached a maximum at 6 months. Lactic acid bacteria, in particular, Lactococcus lactis and Lactobacillus paracasei, dominated at all ripening periods of Yoghurt cheese (7 days, 6 and 18 months). Staphylococcus equorum, Enterococcus faecalis, Escherichia coli, Raoultella ornithinolytica, Providencia stuartii, and Kurthia gibsonii were isolated in small amounts from Yoghurt cheese. Alpine and Yoghurt hard cheeses made from raw goat milk are ripened with mycoid mites Acarus siro, which are involved in forming the cheese rind. The study results can be used as an element of the authenticity criterion for craft hard cheeses made from raw milk.
Metrics
References
1. Nelli, A., Venardou, B., Skoufos, I., Voidarou, C., Lagkouvardos, I., & Tzora, A. (2023). An insight into goat cheese: the tales of Artisanal and industrial Gidotyri microbiota. In Microorganisms (Vol. 11, Issue 1, p. 123). MDPI AG. https://doi.org/10.3390/microorganisms11010123
2. Jakabová, S., Árvay, J., Benešová, L., Zajác, P., Čapla, J., Čurlej, J., & Golian, J. (2023). Evaluation of biogenic amines in goat and sheep cheeses of Slovak origin. In Journal of Microbiology, Biotechnology and Food Sciences (Vol 13, Issue 2, p. 1). EBSCO Industries, Inc. https://doi.org/10.55251/jmbfs.10000
3. Kothe, C. I., Mohellibi, N., & Renault, P. (2022). Revealing the microbial heritage of traditional Brazilian cheeses through metagenomics. In Food Research International (Ottawa, Ont.) (Vol. 157, p. 111265). Elsevier BV. https://doi.org/10.1016/j.foodres.2022.111265
4. Bettera, L., Levante, A., Bancalari, E., Bottari, B., & Gatti, M. (2023). Lactic acid bacteria in cow raw milk for cheese production: Which and how many?. In Frontiers in Microbiology (Vol. 13, p. 1092224). Frontiers Media SA. https://doi.org/10.3389/fmicb.2022.1092224
5. Serrano, S., Ferreira, M. V., Alves-Barroco, C., Morais, S., Barreto-Crespo, M. T., Tenreiro, R., & Semedo-Lemsaddek, T. (2024). Beyond harmful: exploring biofilm formation by enterococci isolated from Portuguese traditional cheeses. In Foods (Basel, Switzerland) (Vol. 13, Issue 19, p. 3067). MDPI AG. https://doi.org/10.3390/foods13193067
6. Kukhtyn, M., Arutiunian, D., Pokotylo, O., Kravcheniuk, K., Salata, V., Horiuk, Y., Karpyk, H., & Dalievska, D. (2024). Microbiological characteristics of hard cheese with flax seeds. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, p. 281-296). HACCP Consulting. https://doi.org/10.5219/1956
7. Coelho, M. C., Malcata, F. X., & Silva, C. C. G. (2022). Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. In Foods (Basel, Switzerland) (Vol. 11, Issue 15, p. 2276). MDPI AG. https://doi.org/10.3390/foods11152276
8. Papadimitriou, K., Anastasiou, R., Georgalaki, M., Bounenni, R., Paximadaki, A., Charmpi, C., Alexandraki, V., Kazou, M., & Tsakalidou, E. (2022). Comparison of the Microbiome of Artisanal Homemade and Industrial Feta Cheese through Amplicon Sequencing and Shotgun Metagenomics. In Microorganisms (Vol. 10, Issue 5, p. 1073). MDPI AG. https://doi.org/10.3390/microorganisms10051073
9. Rogoskii, I., Mushtruk, M., Titova, L., Snezhko, O., Rogach, S., Blesnyuk, O., Rosamaha, Y., Zubok, T., Yeremenko, O., & Nadtochiy, O. (2020). Engineering management of starter cultures in study of temperature of fermentation of sour-milk drink with apiproducts. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 14, pp. 1047–1054). HACCP Consulting. https://doi.org/10.5219/1437
10. Dudynska, A. T., Romanko, V. O., Dudynsky, T. T., Karabiniuk, M. M. & Zhovnerchuk, O. V. (2023). Species diversity and distribution of synanthropic Acarid mites (Acariformes, Acaridia) in Transcarpathia. In Zoodiversity (Vol. 57, Issue 4, p. 283-292). Publishing House "Akademperiodyka" of the National Academy of Sciences of Ukraine. https://doi.org/10.15407/zoo2023.04.283
11. Shimano, S., Hiruta, S. F., Shimizu, N., Hagino, W., Aoki, J. I., & OConnor, B. M. (2022). Do 'cheese factory-specific' mites (Acari: Astigmata) exist in the cheese-ripening cabinet? In Experimental & Applied Acarology (Vol. 87, Issue 1, p. 49-65). Springer Science+Business Media. https://doi.org/10.1007/s10493-022-00725-8
12. Shimizu, N., OConnor, B. M., Hiruta, S. F., Hagino, W., & Shimano, S. (2022). Mite secretions from three traditional mite-ripened cheese types: are ripened French cheeses flavored by the mites (Acari: Astigmata)? In Experimental & Applied Acarology (Vol. 87, Issue 4, p. 309-323). Springer Science+Business Media. https://doi.org/10.1007/s10493-022-00734-7
13. Singhal, N., Kumar, M., Kanaujia, P. K., & Virdi, J. S. (2015). MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. In Frontiers in Microbiology (Vol. 6, p. 791). Frontiers Media SA. https://doi.org/10.3389/fmicb.2015.00791
14. Melnyk, J. P., Smith, A., Scott-Dupree, C., Marcone, M. F., & Hill, A. (2010). Identification of cheese mite species inoculated on Mimolette and Milbenkase cheese through cryogenic scanning electron microscopy. In Journal of Dairy Science (Vol. 93, Issue 8, p. 3461-3468). Elsevier BV. https://doi.org/10.3168/jds.2009-2937
15. Mullen, G. R., & OConnor, B. M. (2019). Medical and Veterinary Entomology (Third Edition). In Academic Press. https://doi.org/10.1016/B978-0-12-814043-7.00026-1
16. Pepi, M., & Focardi, S. (2022). The microbiology of cheese and dairy products is a critical step in ensuring health, quality and typicity. In Corpus Journal of Dairy and Veterinary Science (Vol. 3, p. 1043). Corpus Publishers. https://doi.org/10.54026/CJDVS1043
17. Ritschard, J. S., & Schuppler, M. (2024). The microbial diversity on the surface of smear-ripened cheeses and its impact on cheese quality and safety. In Foods (Vol. 13, Issue 2, p. 214). MDPI AG. https://doi.org/10.3390/foods13020214
18. Lokes, S. I., Shevchenko, L. V., Mykhalska, V. M., Poliakovskyi, V. M., & Zlamanyuk, L. M. (2024). Influence of Lactobacillus curvatus and Lactococcus lactis subsp. lactis on the shelf life of sausages in vacuum packaging. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 2, p. 321-326). Oles Honchar Dnipro National University. https://doi.org/10.15421/022446
19. Bal-Prylypko, L., Danylenko, S., Mykhailova, O., Nedorizanyuk, L., Bovkun, A., Slobodyanyuk, N., Omelian, A., & Ivaniuta, A. (2024). Influence of starter cultures on microbiological and physical-chemical parameters of dry-cured products. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, p. 313-330). HACCP Consulting. https://doi.org/10.5219/1960
20. Haastrup, M. K., Johansen, P., Malskær, A. H., Castro-Mejía, J. L., Kot, W., Krych, L., Arneborg, N., & Jespersen, L. (2018). Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. In International Journal of Food Microbiology (Vol. 285, p. 174-187). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2018.08.015
21. Vázquez, L., Srednik, M. E., Rodríguez, J., Flórez, A. B., & Mayo, B. (2023). Antibiotic resistance/susceptibility profiles of Staphylococcus equorum strains from cheese, and genome analysis for antibiotic resistance genes. In International Journal of Molecular Sciences (Vol. 24, Issue 14, p. 11657). MDPI AG. https://doi.org/10.3390/ijms241411657
22. Výrostková, J., Regecová, I., Zigo, F., Semjon, B., & Gregová, G. (2021). Antimicrobial resistance of Staphylococcus sp. isolated from cheeses. In Animals: an Open Access Journal from MDPI (Vol. 12, Issue 1, p. 36). MDPI AG. https://doi.org/10.3390/ani12010036
23. Bockelmann, W. (2002). Development of defined surface starter cultures for the ripening of smear cheeses. In International Dairy Journal (Vol. 12, Issue 2–3, p. 123-131). Elsevier BV. https://doi.org/10.1016/S0958-6946(01)00152-2
24. Centeno, J. A., & Carballo, J. (2023). Current Advances in Cheese Microbiology.In Foods (Vol. 12, Issue 13, p. 2577). MDPI AG. https://doi.org/10.3390/foods12132577
25. Výrostková, J., Regecová, I., Dudriková, E., Marcinčák, S., Vargová, M., Kováčová, M., & Maľová, J. (2021). Antimicrobial resistance of Enterococcus sp. isolated from sheep and goat cheeses. In Foods (Vol. 10, Issue 8, p. 1844). MDPI AG. https://doi.org/10.3390/foods10081844
26. Popović, N., Veljović, K., Radojević, D., Brdarić, E., Stevanović, D., Živković, M., & Kojić, M. (2024). Insight into the probiogenomic potential of Enterococcus faecium BGPAS1-3 and application of a potent thermostable bacteriocin. In Foods (Basel, Switzerland) (Vol. 13, Issue 16, p. 2637). MDPI AG. https://doi.org/10.3390/foods13162637
27. Lauková, A., Tomáška, M., Kmeť, V., Strompfová, V., Pogány Simonová, M., & Dvorožňáková, E. (2021). Slovak local ewe's milk lump cheese, a source of beneficial Enterococcus durans strain. In Foods (Basel, Switzerland) (Vol. 10, Issue 12, p. 3091). MDPI AG. https://doi.org/10.3390/foods10123091
28. Hanzelová, Z., Dudriková, E., Lovayová, V., Výrostková, J., Regecová, I., Zigo, F., & Bartáková, K. (2024). Occurrence of enterococci in the process of artisanal cheesemaking and their antimicrobial resistance. In Life (Basel, Switzerland) (Vol. 14, Issue 7, p. 890). MDPI AG. https://doi.org/10.3390/life14070890
29. Iakubchak, O., Martynenko, O., Taran, T., Pylypchuk, O., Naumenko, T., Tverezovska, N., Menchynska, A., & Stetsyuk, I. (2024). Analysis of the hard rennet cheese microbiota at different stages of the technological process. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, p. 899-918). HACCP Consulting. https://doi.org/10.5219/2011
30. Tirloni, E., Stella, S., Celandroni, F., Mazzantini, D., Bernardi, C., & Ghelardi, E. (2022). Bacillus cereus in dairy products and production plants. In Foods (Vol. 11, Issue 17, p. 2572). MDPI AG. https://doi.org/10.3390/foods11172572
31. Cruz-Facundo, I. -M., Toribio-Jiménez, J., Castro-Alarcón, N., Leyva-Vázquez, M. -A., Rodríguez-Ruíz, H. -A., Pérez-Olais, J. -H., Adame-Gómez, R., Rodríguez-Bataz, E., Reyes-Roldán, J., Muñoz-Barrios, S., & Ramírez-Peralta, A. (2023). Bacillus cereus in the artisanal cheese production chain in southwestern Mexico. In Microorganisms (Vol. 11, Issue 5, p. 1290). MDPI AG. https://doi.org/10.3390/microorganisms11051290
32. Bintsis T. (2021). Yeasts in different types of cheese. In AIMS Microbiology (Vol. 7, Issue 4, p. 447-470). AIMS Press. https://doi.org/10.3934/microbiol.2021027
33. Sevinc-Demircan, B., & Ozturkoglu-Budak, S. (2023). Use of yeast isolates of cheese origin as adjunct culture in Beyaz cheese: Influence on sensorial, textural and quality characteristics. In Journal of Food Science and Technology (Vol. 60, Issue 10, p. 2670–2680). Springer Science+Business Media. https://doi.org/10.1007/s13197-023-05791-3
34. Souza, L. V., Rodrigues, R. d. S., Fusieger, A., da Silva, R. R., de Jesus Silva, S. R., Martins, E., Machado, S. G., Caggia, C., Randazzo, C. L., & de Carvalho, A. F. (2023). Diversity of filamentous fungi associated with dairy processing environments and spoiled products in Brazil. In Foods (Vol. 12, Issue 1, p. 153). MDPI AG. https://doi.org/10.3390/foods12010153
35. Zhang, K., Zhang, Y., Li, S., Li, Y., Li, B., Guo, Z., & Xiao, S. (2022). Fungal diversity in Xinjiang traditional cheese and its correlation with moisture content. In Indian Journal of Microbiology (Vol. 62, Issue 1, p. 47-53). Microbiology Society. https://doi.org/10.1007/s12088-021-00967-x
36. Sadvari, V. Y., Shevchenko, L. V., Slobodyanyuk, N. M., Tupitska, O. M., Gruntkovskyi, M. S., & Furman, S. V. (2024). Microbiome of craft hard cheeses from raw goat milk during ripening. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 3, p. 483-489). Oles Honchar Dnipro National University. https://doi.org/10.15421/022468
37. Rodríguez, A., Magan, N., & Delgado, J. (2024). Exploring a cheese ripening process that hinders ochratoxin a production by Penicillium nordicum and Penicillium verrucosum. In Biology (Vol. 13, Issue 8, p. 582). BioMed Central Ltd. https://doi.org/10.3390/biology13080582
38. Martin, J. G. P., Silva, J. M. M., César, I. C. D. R., da Silva, M., Santana, S. A., Veloso, T. G. R., Silva, J. G. E., Ferreira, C. L. L. F., Leech, J., & Cotter, P. D. (2023). Seasonal variation in the Canastra cheese mycobiota. In Frontiers in Microbiology (Vol. 13, p. 1076672). Frontiers Media SA. https://doi.org/10.3389/fmicb.2022.1076672
39. Psomas, E., Sakaridis, I., Boukouvala, E., Karatzia, M. A., Ekateriniadou, L. V., & Samouris, G. (2023). indigenous lactic acid bacteria isolated from Raw Graviera cheese and evaluation of their most important technological properties. In Foods (Basel, Switzerland) (Vol. 12, Issue 2, p. 370). MDPI AG. https://doi.org/10.3390/foods12020370
40. Queiroz, L. L., Lacorte, G. A., Isidorio, W. R., Landgraf, M., de Melo Franco, B. D. G., Pinto, U. M., & Hoffmann, C. (2023). High level of interaction between phages and bacteria in an artisanal raw milk cheese microbial community. In mSystems (Vol. 8, Issue 1, p. e0056422). American Society for Microbiology. https://doi.org/10.1128/msystems.00564-22
41. Hoving-Bolink, R. A. H., Antonis, A. F. G., Te Pas, M. F. W., & Schokker, D. (2023). An observational study of the presence and variability of the microbiota composition of goat herd milk related to mainstream and artisanal farm management. In PloS One (Vol. 18, Issue 10, p. e0292650). Public Library of Science. https://doi.org/10.1371/journal.pone.0292650
42. Perez, P. R. (2021). Infecciones urinarias por el género Raoultella. Revisión de la literatura y aportación de 1 caso por Raoultella ornithinolytica [Tract infections by the genus Raoultella. Literature review and contribution of 1 case of Raoultella ornithinolytica]. In Archivos Espanoles de Urologia (Vol. 74, Issue 3, pp. 276–286). Dialnet Foundation.
43. Lokes, S., Shevchenko, L., Doronin, K., Mykhalska, V., Israelian, V., Holembovska, N., Tverezovska, N., & Savchenko, O. (2024). Influence of starter cultures of lactic acid bacteria on microbiological parameters and shelf life of sausages. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, p. 935-950). HACCP Consulting. https://doi.org/10.5219/2012
44. Al-Gburi N. M. (2021). Corrigendum to "Isolation and Molecular Identification and Antimicrobial Susceptibility of Providencia spp. from raw cow's milk in Baghdad, Iraq". In Veterinary Medicine International (Vol. 2021, p. 2954176). John Wiley & Sons Ltd. https://doi.org/10.1155/2021/2954176
45. Guidone, G. H. M., Cardozo, J. G., Silva, L. C., Sanches, M. S., Galhardi, L. C. F., Kobayashi, R. K. T., Vespero, E. C., & Rocha, S. P. D. (2023). Epidemiology and characterization of Providencia stuartii isolated from hospitalized patients in southern Brazil: a possible emerging pathogen. In Access Microbiology (Vol. 5, Issue 10, p. 000652v4). Microbiology Society. https://doi.org/10.1099/acmi.0.000652.v4
46. Ribeiro, J. C., Júnior, Peruzi, G. A. S., Bruzaroski, S. R., Tamanini, R., Lobo, C. M. O., Alexandrino, B., Conti, A. C. M., Alfieri, A. A., & Beloti, V. (2019). Short communication: Effect of bactofugation of raw milk on counts and microbial diversity of psychrotrophs. In Journal of Dairy Science (Vol. 102, Issue 9, p. 7494-7799). Elsevier BV. https://doi.org/10.3168/jds.2018-16148
47. Čapla, J., Zajác, P., Čurlej, J., Benešová, L., Jakabová, S., & Hleba, L. (2024). Authenticity analysis of 100% sheep’s bryndza from selected establishments in the Slovak republic. In Journal of Microbiology, Biotechnology and Food Sciences (Vol. 13, Issue 6, p. e10920). Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture. https://doi.org/10.55251/jmbfs.10920
48. Sadvari, V. Y., Shevchenko, L. V., Slobodyanyuk, N. M., Furman, S. V., Lisohurska, D. V., & Lisohurska, O. V. (2024). Chemical composition of craft hard cheeses from raw goat milk during the ripening process. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 4, p. 666-673). Oles Honchar Dnipro National University. https://doi.org/10.15421/022496
49. Mushtruk, M., Palamarchuk, I., Palamarchuk, V., Gudzenko, M., Slobodyanyuk, N., Zhuravel, D., Petrychenko, I., & Pylypchuk О. (2023). Mathematical modelling of quality assessment of cooked sausages with the addition of vegetable additives. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, p. 242-255). HACCP Consulting. https://doi.org/10.5219/1845
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Viktor Davydovych, Larysa Shevchenko, Tetiana Brovenko, Nataliia Nesterenko, Alona Altanova, Ruslana Umanets, Yaroslav Rudyk, Nataliia Kovalenko (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.