Smart and sustainable food packaging: recent advances in active/intelligent technologies and future directions

Authors

  • Eunjeong Park Division of Beauty Arts Care, Department of Practical Arts, Graduate School of Culture and Arts, Dongguk University, Seoul 04620, Republic of Korea Tel.: +821082241225 Author https://orcid.org/0000-0002-9089-1489
  • Ki Han Kwon College of General Education, Kookmin University, Seoul 02707, Republic of Korea Tel.: +821066853725 Author https://orcid.org/0000-0001-6078-5899

DOI:

https://doi.org/10.5219/scifood.83

Keywords:

smart food packaging, active packaging, intelligent packaging, sustainable materials, food safety, waste reduction

Abstract

This narrative review synthesizes current knowledge and technological advances in smart and sustainable food packaging and focuses on active, intelligent, and bio-based systems. No experimental units, treatments, or controlled interventions were applied because this study is based solely on structural assessments of published scientific literature, regulatory documents, and technical reports. The goal is to clarify how new packaging technologies contribute to food quality, food safety assurance, and environmental performance. Active packaging technology incorporating antimicrobial agents, antioxidant emitters, gas removers, and natural bioactive compounds has demonstrated strong potential to extend shelf life and reduce microbial and oxidative degradation across various food categories. Intelligent packaging systems, including time-temperature indicators, freshness sensors, and biosensing materials, monitor product status in real time, improving transparency across the supply chain. At the same time, bio-based and biodegradable materials such as plant-derived polymers, starch composites, and cellulose films provide environmentally responsible alternatives to existing plastics and support circular economic strategies. Sustainability assessments, environmental burdens, and regulatory reviews indicate ongoing challenges related to safety assessments, movement controls, and global harmonization. Consumer Acceptance Studies further emphasize that perceived safety, environmental benefits, and usability strongly influence the willingness to adopt new packaging systems. This comment suggests that integrating active, intelligent, and bio-based components is essential to developing safe and sustainable next-generation packaging solutions. To accelerate the commercial adoption of innovative and sustainable packaging technologies in the future, the focus should be on regulatory alignment, scalable industrial manufacturing, and digital integration.

References

1. Prasanna, S., Verma, P., & Bodh, S. (2024). The role of food industries in sustainability transition: A review. Environment, Development and Sustainability, 27(7), 15113-15133. https://doi.org/10.1007/s10668-024-04642-1 DOI: https://doi.org/10.1007/s10668-024-04642-1

2. Munesue, Y., Masui, T., & Fushima, T. (2015). The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies, 17(1), 43–77. https://doi.org/10.1007/s10018-014-0083-0 DOI: https://doi.org/10.1007/s10018-014-0083-0

3. Rajendran, S., Al-Samydai, A., Palani, G., Trilaksana, H., Sathish, T., Giri, J., … & Nasri, F. (2025). Replacement of petroleum-based products with plant-based materials, green and sustainable energy—A review. Engineering Reports, 7(4), e70108. https://doi.org/10.1002/eng2.70108 DOI: https://doi.org/10.1002/eng2.70108

4. Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and bio-based food packaging: A review on past and current design innovations. Foods, 12(5), 1057. https://doi.org/10.3390/foods12051057 DOI: https://doi.org/10.3390/foods12051057

5. Abekoon, T., Buthpitiya, B. L. S. K., Sajindra, H., Samarakoon, E. R. J., Jayakody, J. A. D. C. A., Kantamaneni, K., & Rathnayake, U. (2024). A comprehensive review to evaluate the synergy of intelligent food packaging with modern food technology and artificial intelligence field. Discover Sustainability, 5(1), 160. https://doi.org/10.1007/s43621-024-00371-7 DOI: https://doi.org/10.1007/s43621-024-00371-7

6. Roopa, H., Panghal, A., Kumari, A., Chhikara, N., Sehgal, E., & Rawat, K. (2023). Active packaging in food industry. In Novel Technologies in Food Science (pp. 375–404). John Wiley & Sons. https://doi.org/10.1002/9781119776376.ch10 DOI: https://doi.org/10.1002/9781119776376.ch10

7. Luo, X., Zaitoon, A., & Lim, L. T. (2022). A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2489–2519. https://doi.org/10.1111/1541-4337.12942 DOI: https://doi.org/10.1111/1541-4337.12942

8. Chatterjee, N., Nandi, S. K., & Dhar, P. (2025). The future of green biopolymers in packaging applications. In Green biopolymers for packaging applications (pp. 378–402). CRC Press. https://doi.org/10.1201/9781003455356-17 DOI: https://doi.org/10.1201/9781003455356-17

9. Lacourt, C., Mukherjee, K., Garthoff, J., O’Sullivan, A., Meunier, L., & Fattori, V. (2024). Recent and emerging food packaging alternatives: Chemical safety risks, current regulations, and analytical challenges. Comprehensive Reviews in Food Science and Food Safety, 23(6), e70059. https://doi.org/10.1111/1541-4337.70059

10. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: Concepts and applications. Journal of Food Science, 70(1), R1–R10. https://doi.org/10.1111/j.1365-2621.2005.tb09052.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb09052.x

11. Yin, Y., & Woo, M. W. (2024). Transitioning of petroleum-based plastic food packaging to sustainable bio-based alternatives. Sustainable Food Technology, 2(3), 548–566. https://doi.org/10.1039/D4FB00028E

12. Yin, Y., & Woo, M. W. (2024). Transitioning of petroleum-based plastic food packaging to sustainable bio-based alternatives. Sustainable Food Technology, 2(3), 548–566. https://doi.org/10.1039/D4FB00028E DOI: https://doi.org/10.1039/D4FB00028E

13. Adeyeye, S. A., & Fayemi, O. (2018). Nanotechnology and food processing: Between innovations and consumer safety. Journal of Culinary Science & Technology, 16(4), 263–284. https://doi.org/10.1080/15428052.2018.1476276 DOI: https://doi.org/10.1080/15428052.2018.1476276

14. Bohlmann, G. M. (2004). Biodegradable packaging life-cycle assessment. Environmental Progress, 23(4), 342–346. https://doi.org/10.1002/ep.10053 DOI: https://doi.org/10.1002/ep.10053

15. Steenis, N. D., & Fischer, A. R. H. (2016). Consumer attitudes towards nanotechnology in food products: An attribute-based analysis. British Food Journal, 118(5), 1215–1231. https://doi.org/10.1108/BFJ-09-2015-0330 DOI: https://doi.org/10.1108/BFJ-09-2015-0330

16. Maksimović, M., Vujović, V., & Omanović-Mikličanin, E. (2015). Application of internet of things in food packaging and transportation. International Journal of Sustainable Agricultural Management and Informatics, 1(2), 114–130. https://doi.org/10.1504/IJSAMI.2015.075053

17. Wang, L., He, Y., & Wu, Z. (2022). Design of a blockchain-enabled traceability system framework for food supply chains. Foods, 11(5), 744. https://doi.org/10.3390/foods11050744 DOI: https://doi.org/10.3390/foods11050744

18. Reinales, D., Zambrana-Vásquez, D., & de Guinoa, A. S. (2020). Social life cycle assessment of product value chains under a circular economy approach: A case study in the plastic packaging sector. Sustainability, 12(16), 6671. https://doi.org/10.3390/su12166671 DOI: https://doi.org/10.3390/su12166671

19. Maksimović, M., Vujović, V., & Omanović-Mikličanin, E. (2015). Application of internet of things in food packaging and transportation. International Journal of Sustainable Agricultural Management and Informatics, 1(2), 114–130. https://doi.org/10.1504/IJSAMI.2015.075053 DOI: https://doi.org/10.1504/IJSAMI.2015.075053

20. Clodoveo, M. L., Muraglia, M., Fino, V., Curci, F., Fracchiolla, G., & Corbo, F. (2021). Overview on innovative packaging methods aimed to increase the shelf-life of cook-chill foods. Foods, 10(9), 2086. https://doi.org/10.3390/foods10092086 DOI: https://doi.org/10.3390/foods10092086

21. D’Almeida, A. P., & de Albuquerque, T. L. (2024). Innovations in food packaging: From bio-based materials to smart packaging systems. Processes, 12(10), 2085. https://doi.org/10.3390/pr12102085

22. Sundaresan, J., Gupta, A., & Suadamara, R. (2025). Advances in smart food packaging for a sustainable future. IOP Conference Series: Earth and Environmental Science, 1488(1), 012117. https://doi.org/10.1088/1755-1315/1488/1/012117 DOI: https://doi.org/10.1088/1755-1315/1488/1/012117

23. Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in smart packaging concepts for food: An extensive review. Foods, 9(11), 1628. https://doi.org/10.3390/foods9111628 DOI: https://doi.org/10.3390/foods9111628

24. Zabihzadeh Khajavi, M., Ebrahimi, A., Yousefi, M., Ahmadi, S., Farhoodi, M., Mirza Alizadeh, A., & Taslikh, M. (2020). Strategies for producing improved oxygen barrier materials appropriate for the food packaging sector. Food Engineering Reviews, 12(3), 346–363. https://doi.org/10.1007/s12393-020-09200-y DOI: https://doi.org/10.1007/s12393-020-09235-y

25. Ghoshal, G. (2018). Recent trends in active, smart, and intelligent packaging for food products. In Food packaging and preservation (pp. 343–374). Academic Press. https://doi.org/10.1016/B978-0-12-811516-9.00010-5 DOI: https://doi.org/10.1016/B978-0-12-811516-9.00010-5

26. Deshmukh, R. K., & Gaikwad, K. K. (2024). Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery, 14(4), 4419–4440. https://doi.org/10.1007/s13399-022-02623-w DOI: https://doi.org/10.1007/s13399-022-02623-w

27. Bukvicki, D., D’Alessandro, M., Rossi, S., Siroli, L., Gottardi, D., Braschi, G., … & Lanciotti, R. (2023). Essential oils and their combination with lactic acid bacteria and bacteriocins to improve the safety and shelf life of foods: A review. Foods, 12(17), 3288. https://doi.org/10.3390/foods12173288 DOI: https://doi.org/10.3390/foods12173288

28. Maruyama, S., Streletskaya, N. A., & Lim, J. (2021). Clean label: Why this ingredient but not that one? Food Quality and Preference, 87, 104062. https://doi.org/10.1016/j.foodqual.2020.104062 DOI: https://doi.org/10.1016/j.foodqual.2020.104062

29. Westlake, J. R., Tran, M. W., Jiang, Y., Zhang, X., Burrows, A. D., & Xie, M. (2022). Biodegradable active packaging with controlled release: Principles, progress, and prospects. ACS Food Science & Technology, 2(8), 1166–1183. https://doi.org/10.1021/acsfoodscitech.2c00070 DOI: https://doi.org/10.1021/acsfoodscitech.2c00070

30. Arvanitoyannis, I. S., & Kotsanopoulos, K. V. (2014). Migration phenomenon in food packaging: Food–package interactions, mechanisms, types of migrants, testing and relative legislation—A review. Food and Bioprocess Technology, 7(1), 21–36. https://doi.org/10.1007/s11947-013-1106-8 DOI: https://doi.org/10.1007/s11947-013-1106-8

31. Lydekaityte, J., & Tambo, T. (2020). Smart packaging: Definitions, models and packaging as an intermediator between digital and physical product management. The International Review of Retail, Distribution and Consumer Research, 30(4), 377–410. https://doi.org/10.1080/09593969.2020.1781228 DOI: https://doi.org/10.1080/09593969.2020.1724555

32. Liu, Y., Li, L., Yu, Z., Ye, C., Pan, L., & Song, Y. (2023). Principle, development and application of time–temperature indicators for packaging. Packaging Technology and Science, 36(10), 833–853. https://doi.org/10.1002/pts.2789 DOI: https://doi.org/10.1002/pts.2761

33. Karanth, S., Feng, S., Patra, D., & Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14, 1198124. https://doi.org/10.3389/fmicb.2023.1198124 DOI: https://doi.org/10.3389/fmicb.2023.1198124

34. Kumar, D., & Malviya, R. (2025). Biosensor to detect and analyse food quality: Integrating chemical sensors with nanotechnology. Trends in Food Science & Technology, 105337. https://doi.org/10.1016/j.tifs.2025.105337 DOI: https://doi.org/10.1016/j.tifs.2025.105337

35. Machín, A., & Márquez, F. (2025). Next-generation chemical sensors: The convergence of nanomaterials, advanced characterization, and real-world applications. Chemosensors, 13(9), 345. https://doi.org/10.3390/chemosensors13090345 DOI: https://doi.org/10.3390/chemosensors13090345

36. Nicolae-Maranciuc, A., & Chicea, D. (2025). Polymeric systems as hydrogels and membranes containing silver nanoparticles for biomedical and food applications: Recent approaches and perspectives. Gels, 11(9), 699. https://doi.org/10.3390/gels11090699 DOI: https://doi.org/10.3390/gels11090699

37. Sharrock, K. R., & Henzell, R. F. (2010). Ethylene ripening of pears by unconventional means: Use of experimental thimble-sized ethylene capsules inside cartons and clamshells. Acta Horticulturae, 880, 315–322. https://doi.org/10.17660/actahortic.2010.880.40 DOI: https://doi.org/10.17660/ActaHortic.2010.880.40

38. Lorenzo, F., Sanz-Puig, M., Bertó, R., & Orihuel, E. (2020). Assessment of performance of two rapid methods for on-site control of microbial and biofilm contamination. Applied Sciences, 10(3), 744. https://doi.org/10.3390/app10030744 DOI: https://doi.org/10.3390/app10030744

39. Chen, S., Brahma, S., Mackay, J., Cao, C., & Aliakbarian, B. (2020). The role of smart packaging system in food supply chain. Journal of Food Science, 85(3), 517–525. https://doi.org/10.1111/1750-3841.15046 DOI: https://doi.org/10.1111/1750-3841.15046

40. Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053 DOI: https://doi.org/10.1098/rstb.2009.0053

41. Zhao, X., Cornish, K., & Vodovotz, Y. (2020). Narrowing the gap for bioplastic use in food packaging—An update. Environmental Science & Technology, 54(8), 4712–4732. https://doi.org/10.1021/acs.est.9b03755 DOI: https://doi.org/10.1021/acs.est.9b03755

42. Chen, G.-Q., & Patel, M. K. (2012). Plastics derived from biological sources: Present and future: A technical and environmental review. Chemical Reviews, 112(4), 2082–2099. https://doi.org/10.1021/cr200162d DOI: https://doi.org/10.1021/cr200162d

43. D’Almeida, A. P., & de Albuquerque, T. L. (2024). Innovations in food packaging: From bio-based materials to smart packaging systems. Processes, 12(10), 2085. https://doi.org/10.3390/pr12102085

44. Pal, A., & Kant, K. (2020). Smart sensing, communication, and control in perishable food supply chain. ACM Transactions on Sensor Networks, 16(1), 1–41. https://doi.org/10.1145/3360726 DOI: https://doi.org/10.1145/3360726

45. Sobhan, A., Hossain, A., Wei, L., Muthukumarappan, K., & Ahmed, M. (2025). IoT-enabled biosensors in food packaging: A breakthrough in food safety for monitoring risks in real time. Foods, 14(8), 1403. https://doi.org/10.3390/foods14081403 DOI: https://doi.org/10.3390/foods14081403

46. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2020). Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid-based materials. Materials, 13(21), 4994. https://doi.org/10.3390/ma13214994 DOI: https://doi.org/10.3390/ma13214994

47. Oliver-Cuenca, V., Salaris, V., Muñoz-Gimena, P. F., Agüero, Á., Peltzer, M. A., Montero, V. A., Arrieta, M. P., Sempere-Torregrosa, J., Pavon, C., Samper, M. D., Crespo, G. R., Kenny, J. M., López, D., & Peponi, L. (2024). Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers, 16(21), 3015. https://doi.org/10.3390/polym16213015 DOI: https://doi.org/10.3390/polym16213015

48. Naser, A. Z., Deiab, I., Defersha, F., & Yang, S. (2021). Expanding poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) applications: A review on modifications and effects. Polymers, 13(23), 4271. https://doi.org/10.3390/polym13234271 DOI: https://doi.org/10.3390/polym13234271

49. Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA)-based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321 DOI: https://doi.org/10.1021/acssuschemeng.6b00321

50. Molavi, H., Behfar, S., Shariati, M. A., Kaviani, M., & Atarod, S. (2015). A review on biodegradable starch-based film. Journal of Microbiology, Biotechnology and Food Sciences, 4(5), 456–461. https://doi.org/10.15414/jmbfs.2015.4.5.456-461 DOI: https://doi.org/10.15414/jmbfs.2015.4.5.456-461

51. Yaradoddi, J. S., Banapurmath, N. R., Ganachari, S. V., Soudagar, M. E. M., Mubarak, N. M., Hallad, S., Hugar, S., & Fayaz, H. (2020). Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78912-z DOI: https://doi.org/10.1038/s41598-020-78912-z

52. Bhardwaj, U., Dhar, P., Kumar, A., & Katiyar, V. (2014). Polyhydroxyalkanoates (PHA)-cellulose-based nanobiocomposites for food packaging applications. In Food additives and packaging (pp. 275–314). American Chemical Society. https://doi.org/10.1021/bk-2014-1162.ch012 DOI: https://doi.org/10.1021/bk-2014-1162.ch019

53. Jali, S., Mohan, T. P., Mwangi, F. M., & Kanny, K. (2023). A review on barrier properties of cellulose/clay nanocomposite polymers for packaging applications. Polymers, 16(1), 51. https://doi.org/10.3390/polym16010051 DOI: https://doi.org/10.3390/polym16010051

54. Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., & Thakur, V. K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383–395. https://doi.org/10.1080/1023666X.2018.1455382 DOI: https://doi.org/10.1080/1023666X.2018.1455382

55. Negi, R., & Yadav, S. (2025). A comprehensive review on edible packaging and its formation methods with recent eco-friendly advancements. Biopolymers, 116(6), e70053. https://doi.org/10.1002/bip.70053 DOI: https://doi.org/10.1002/bip.70053

56. Ansar, A., Du, J., Javed, Q., Adnan, M., & Javaid, I. (2025). Biodegradable waste in compost production: A review of its economic potential. Nitrogen, 6(2), 24. https://doi.org/10.3390/nitrogen6020024 DOI: https://doi.org/10.3390/nitrogen6020024

57. Janseerat, M., Kolekar, M., Reddy, C. S., Sharma, S., & Roy, S. (2024). Anthocyanin-based natural color-induced intelligent food packaging sensor: A review. Current Food Science and Technology Reports, 2(2), 157–167. https://doi.org/10.1007/s43555-024-00021-z DOI: https://doi.org/10.1007/s43555-024-00021-z

58. Pauer, E., Wohner, B., Heinrich, V., & Tacker, M. (2019). Assessing the environmental sustainability of food packaging: An extended life cycle assessment including packaging-related food losses and waste and circularity assessment. Sustainability, 11(3), 925. https://doi.org/10.3390/su11030925 DOI: https://doi.org/10.3390/su11030925

59. Salwa, H. N., Sapuan, S. M., Mastura, M. T., Zuhri, M. Y. M., & Ilyas, R. A. (2021). Life cycle assessment of bio-based packaging products. In Bio-based packaging: Material, environmental and economic aspects (pp. 381–411). https://doi.org/10.1002/9781119381228.ch22 DOI: https://doi.org/10.1002/9781119381228.ch22

60. Mori R. 2023. Replacing all petroleum-based chemical products with natural biomass-based chemical products: a tutorial review. RSC Sustainability, 1(2), 179-212. https://doi.org/10.1039/D2SU00014H DOI: https://doi.org/10.1039/D2SU00014H

61. Olaniyan SA, Hussein JB, Oke MO, Akinwande BA, Workneh TS, Ayodele M, Adeyemi IA. 2025. Assessment of the physicochemical characteristics of by-products of cassava processing and their effects on biodiversity. Environmental Monitoring and Assessment, 197(5), 1–19. https://doi.org/10.1007/s10661-025-13951-5 DOI: https://doi.org/10.1007/s10661-025-13951-5

62. Reichert, C. L., Bugnicourt, E., Coltelli, M. B., Cinelli, P., Lazzeri, A., Canesi, I., … & Schmid, M. (2020). Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers, 12(7), 1558. https://doi.org/10.3390/polym12071558 DOI: https://doi.org/10.3390/polym12071558

63. Kogje, M., Satdive, A., Mestry, S., & Mhaske, S. T. (2025). Biopolymers: A comprehensive review of sustainability, environmental impact, and lifecycle analysis. Iranian Polymer Journal, 34, 1481–1524. https://doi.org/10.1007/s13726-024-01449-9 DOI: https://doi.org/10.1007/s13726-024-01449-9

64. Chandel, S., Shaji, A., & Chutturi, M. (2025). Life cycle assessment of biocomposites: Environmental impacts and sustainability perspectives. In Innovations and applications of advanced biomaterials in healthcare and engineering (pp. 439–502). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-1305-4.ch013 DOI: https://doi.org/10.4018/979-8-3373-1305-4.ch013

65. Mazhandu, Z. S., Muzenda, E., Mamvura, T. A., Belaid, M., & Nhubu, T. (2020). Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: Challenges and opportunities. Sustainability, 12(20), 8360. https://doi.org/10.3390/su12208360 DOI: https://doi.org/10.3390/su12208360

66. Smith, C. E. (2021). A whole-systems assessment of the organic waste value chain and composting infrastructure in the United States (Master’s thesis, Villanova University). https://scholarship.library.villanova.edu/

67. Patel, K. R. (2023). Harmonizing sustainability, functionality, and cost: Navigating responsible packaging innovations in modern supply chains. American Journal of Economic and Management Business (AJEMB), 2(8), 287–300. https://doi.org/10.58631/ajemb.v2i8.51 DOI: https://doi.org/10.58631/ajemb.v2i8.51

68. D’Almeida, A. P., & de Albuquerque, T. L. (2024). Innovations in food packaging: From bio-based materials to smart packaging systems. Processes, 12(10), 2085. https://doi.org/10.3390/pr12102085

69. Sohail, M., Sun, D.-W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662.

70. Panou, A., & Karabagias, I. K. (2024). Migration and safety aspects of plastic food packaging materials: Need for reconsideration? Coatings, 14(2), 168. https://doi.org/10.3390/coatings14020168 DOI: https://doi.org/10.3390/coatings14020168

71. Galanakis, C. M. (2021). Functionality of food components and emerging technologies. Foods, 10(1), 128. https://doi.org/10.3390/foods10010128 DOI: https://doi.org/10.3390/foods10010128

72. Grob, K. (2019). The role of the European Food Safety Authority (EFSA) in a better European regulation of food contact materials – some proposals. Food Additives & Contaminants: Part A, 36(12), 1895–1902. https://doi.org/10.1080/19440049.2019.1662494 DOI: https://doi.org/10.1080/19440049.2019.1662494

73. Gupta, K. (2023). Food safety guidelines for food packaging. In Green sustainable process for chemical and environmental engineering and science (pp. 59–69). Elsevier. https://doi.org/10.1016/B978-0-323-95644-4.00014-0 DOI: https://doi.org/10.1016/B978-0-323-95644-4.00014-0

74. Muncke, J., Backhaus, T., Geueke, B., Maffini, M. V., Martin, O. V., Myers, J. P., … & Scheringer, M. (2017). Scientific challenges in the risk assessment of food contact materials. Environmental Health Perspectives, 125(9), 095001. https://doi.org/10.1289/EHP644

75. Amirullah, N. A., Samsudin, M. H., Norrrahim, M. N. F., Ilyas, R. A., Nurazzi, N. M., Jenol, M. A., Hawanis, H. S. N., & Gunny, A. A. N. (2023). Regulations for food packaging materials. Physical Sciences Reviews, 9(8), 2711–2735. https://doi.org/10.1515/psr-2022-0033 DOI: https://doi.org/10.1515/psr-2022-0033

76. Thapliyal, D., Karale, M., Diwan, V., Kumra, S., Arya, R. K., & Verros, G. D. (2024). Current status of sustainable food packaging regulations: global perspective. Sustainability, 16(13), 5554. https://doi.org/10.3390/su16135554 DOI: https://doi.org/10.3390/su16135554

77. Young, E., Mirosa, M., & Bremer, P. (2020). A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, 63. https://doi.org/10.3389/fsufs.2020.00063

78. Popovic, I., Bossink, B. A., & van der Sijde, P. C. (2019). Factors influencing consumers’ decision to purchase food in environmentally friendly packaging: What do we know and where do we go from here?. Sustainability, 11(24), 7197. https://doi.org/10.3390/su11247197 DOI: https://doi.org/10.3390/su11247197

79. Just, D. R., & Goddard, J. M. 2023. Behavioral framing and consumer acceptance of new food technologies: Factors influencing consumer demand for active packaging. Agribusiness, 39(1), 3–27. https://doi.org/10.1002/agr.21807 DOI: https://doi.org/10.1002/agr.21778

80. Chrysochou, P., and Tiganis, A. 2025. Active, intelligent or sustainable? A comparative study of consumer preferences for food packaging technologies. Packaging Technology and Science, 38(11), 873–882. https://doi.org/10.1002/pts.70005 DOI: https://doi.org/10.1002/pts.70005

81. Karkanorachaki, K., Tsiota, P., Dasenakis, G., Syranidou, E., & Kalogerakis, N. (2022). Nanoplastic generation from secondary PE microplastics: Microorganism-induced fragmentation. Microplastics, 1(1), 6. https://doi.org/10.3390/microplastics1010006 DOI: https://doi.org/10.3390/microplastics1010006

82. Yong, C., Valiyaveettil, S., & Tang, B. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 17(5), 1509. https://doi.org/10.3390/ijerph17051509 DOI: https://doi.org/10.3390/ijerph17051509

83. Bhunia, K., Sablani, S. S., Tang, J., & Rasco, B. (2013). Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Comprehensive Reviews in Food Science and Food Safety, 12(5), 523–545. https://doi.org/10.1111/1541-4337.12028 DOI: https://doi.org/10.1111/1541-4337.12028

84. Apicella, A., Malafeev, K. V., Scarfato, P., & Incarnato, L. (2024). Generation of microplastics from biodegradable packaging films based on PLA, PBS and their blend in freshwater and seawater. Polymers, 16(16), 2268. https://doi.org/10.3390/polym16162268 DOI: https://doi.org/10.3390/polym16162268

85. Hu, J., Duan, Y., Zhong, H., Lin, Q.-B., Zhang, T., Zhao, C.-C., Chen, S., Dong, B., Li, D., Wang, J., Mo, M.-Z., Chen, J., & Zheng, J. (2022). Analysis of microplastics released from plastic take-out food containers based on thermal properties and morphology study. Food Additives & Contaminants: Part A, 40(2), 305–318. https://doi.org/10.1080/19440049.2022.2157894 DOI: https://doi.org/10.1080/19440049.2022.2157894

86. Kourkopoulos, A., Sijm, D., & Vrolijk, M. (2022). Current approaches and challenges of sample preparation procedures for the safety assessment of paper and cardboard food contact materials: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 21(5), 3608–3642. https://doi.org/10.1111/1541-4337.13009 DOI: https://doi.org/10.1111/1541-4337.13009

87. Sorensen, R. M., Kanwar, R. S., & Jovanović, B. (2022). Past, present, and possible future policies on plastic use in the United States, particularly microplastics and nanoplastics: A review. Integrated Environmental Assessment and Management, 19(2), 474–488. https://doi.org/10.1002/ieam.4678 DOI: https://doi.org/10.1002/ieam.4678

88. Sauer, U. (2011). Eating nanomaterials: Cruelty-free and safe? The EFSA guidance on risk assessment of nanomaterials in food and feed. Alternatives to Laboratory Animals, 39(6), 449–456. https://doi.org/10.1177/026119291103900611 DOI: https://doi.org/10.1177/026119291103900611

89. Bumbudsanpharoke, N., Choi, J., & Ko, S. (2015). Applications of nanomaterials in food packaging. Journal of Nanoscience and Nanotechnology, 15(9), 6357–6372. https://doi.org/10.1166/jnn.2015.10847

90. Madhusha, C., Munaweera, I., & Kottegoda, N. (2021). Functional nanomaterials as smart food packaging: A brief review. African Journal of Agriculture and Food Science, 4(1), 58–78. https://abjournals.org/ajafs/wp-content/uploads/sites/16/journal/published_paper/volume-4/issue-1/AJAFS_RB6P4LAU.pdf

91. Morais, L. de O., Macedo, E. V., Granjeiro, J., & Delgado, I. F. (2020). Critical evaluation of migration studies of silver nanoparticles present in food packaging: A systematic review. Critical Reviews in Food Science and Nutrition, 60(18), 3083–3 102. https://doi.org/10.1080/10408398.2019.1676699 DOI: https://doi.org/10.1080/10408398.2019.1676699

92. Pandey, S., & Mishra, A. (2019). Rational approaches for toxicological assessments of nanobiomaterials. Journal of Biochemical and Molecular Toxicology, 33(1), e22335. https://doi.org/10.1002/jbt.22335 DOI: https://doi.org/10.1002/jbt.22335

93. Kassama, L. S., & Liu, L. (2017). In vitro modeling of the gastrointestinal tract: Significance in food and nutritional research and health implications. Food & Nutrition Journal, 2(3), 131. https://doi.org/10.29011/2575-7091.100031 DOI: https://doi.org/10.29011/2575-7091.100031

94. Quoc, T. N., Phuc, N. N., and Duong, N. H. 2025. Examining green packaging, branding, and eco-labeling strategies: The case of young consumers' perceptions and responses in the F&B industry. Cleaner and Responsible Consumption, 16, 100258. https://doi.org/10.1016/j.crcon.2024.100258 DOI: https://doi.org/10.1016/j.clrc.2025.100258

95. Tanzares, J., Rahmiati, F., Jokhu, J. R., and Mangkurat, R. S. B. 2024. The impact of willingness to pay, environmental awareness, consumer behavior, consumer attitudes toward purchase decisions on sustainable packaging in Indonesia. Journal of Character and Environment, 2(1), 15–35. https://doi.org/10.61511/jocae.v2i1.2024.878 DOI: https://doi.org/10.61511/jocae.v2i1.2024.878

96. Nichifor, B., Zait, L., and Timiras, L. 2025. Drivers, barriers, and innovations in sustainable food consumption: a systematic literature review. Sustainability, 17(5), 2233. https://doi.org/10.3390/su17052233 DOI: https://doi.org/10.3390/su17052233

97. Alam, M. W., Kumar, J. V., Awad, M., Saravanan, P., Al-Sowayan, N. S., Rosaiah, P., and Nivetha, M. S. 2025. Emerging trends in food process engineering: integrating sensing technologies for health, sustainability, and consumer preferences. Journal of Food Process Engineering, 48(1), e70035. https://doi.org/10.1111/jfpe.70035 DOI: https://doi.org/10.1111/jfpe.70035

98. Young, E., Mirosa, M., and Bremer, P. 2023. A conceptual model for food industry views on the commercialisation of active and intelligent packaging. Packaging Technology and Science, 36(11), 905–925. https://doi.org/10.1002/pts.2788 DOI: https://doi.org/10.1002/pts.2766

99. Muthu, A., Nguyen, D. H., Neji, C., Törős, G., Ferroudj, A., Atieh, R., … and Béni, Á. 2025. Nanomaterials for smart and sustainable food packaging: nano-sensing mechanisms and regulatory perspectives. Foods, 14(15), 2657. https://doi.org/10.3390/foods14152657 DOI: https://doi.org/10.3390/foods14152657

100. Bhatlawande, A. R., Ghatge, P. U., Shinde, G. U., Anushree, R. K., and Patil, S. D. 2024. Unlocking the future of smart food packaging: biosensors, IoT, and nano materials. Food Science and Biotechnology, 33(5), 1075–1091. https://doi.org/10.1007/s10068-023-01486-9 DOI: https://doi.org/10.1007/s10068-023-01486-9

101. Young, E., Mirosa, M., and Bremer, P. 2020. A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, 63. https://doi.org/10.3389/fsufs.2020.00063

102. Lacourt, C., Mukherjee, K., Garthoff, J., O'Sullivan, A., Meunier, L., and Fattori, V. 2024. Recent and emerging food packaging alternatives: chemical safety risks, current regulations, and analytical challenges. Comprehensive Reviews in Food Science and Food Safety, 23(6), e70059. https://doi.org/10.1002/crfs.70059 DOI: https://doi.org/10.1111/1541-4337.70059

103. Lange, L., O’Connor, K., Arason, S., Bundgård-Jørgensen, U., Canalis, A., Carrez, D., … and Vieira, H. 2021. Developing a sustainable and circular bio-based economy in the EU: partnering across sectors, upscaling, and accelerating knowledge use for climate, environmental, and societal benefits. Frontiers in Bioengineering and Biotechnology, 8, 619066. https://doi.org/10.3389/fbioe.2020.619066 DOI: https://doi.org/10.3389/fbioe.2020.619066

104. Rodrigues, C., Souza, V. G. L., Coelhoso, I., and Fernando, A. L. 2021. Bio-based sensors for smart food packaging—current applications and future trends. Sensors, 21(6), 2148. https://doi.org/10.3390/s21062148 DOI: https://doi.org/10.3390/s21062148

105. Oyegbade, S. A., Mameh, E. O., Oni, J. G., Gbate, M. A., Oluwaseyi, T. A., Wurie, A. W., Azeta, J. I., Joda, J. F., Oyewole, O. A., & Adetunji, C. O. (2025). Innovations in Food Technology: Intelligent Packaging and Advanced Traceability Solutions. In AI Applications in Food Processing and Packaging (pp. 1–22). Royal Society of Chemistry. https://doi.org/10.1039/9781837679119-00001 DOI: https://doi.org/10.1039/9781837679119-00001

106. Khan, P. W., Byun, Y. C., and Park, N. 2020. IoT–blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning. Sensors, 20(10), 2990. https://doi.org/10.3390/s20102990 DOI: https://doi.org/10.3390/s20102990

107. Thakur, D., Bareen, M. A., Gupta, A., Saha, S., and Sahu, J. K. 2024. Frontiers in 3D printing for biobased food packaging. Food Science and Biotechnology, 1–21. https://doi.org/10.1007/s10068-024-01770-2 DOI: https://doi.org/10.1007/s10068-024-01770-2

108. Moreira-Dantas, I. R., Martínez-Zarzoso, I., De Araujo, M. L. F., Evans, J., Foster, A., Wang, X., … and Martin, M. P. 2023. Multi-stakeholder initiatives and decarbonization in the European food supply chain. Frontiers in Sustainability, 4, 1231684. https://doi.org/10.3389/frsus.2023.1231684 DOI: https://doi.org/10.3389/frsus.2023.1231684

109. Mustafa, F., & Andreescu, S. (2020). Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 10(33), 19309–19336. https://doi.org/10.1039/D0RA01084G DOI: https://doi.org/10.1039/D0RA01084G

110. Tehrany, E. A., & Desobry, S. (2004). Partition coefficients in food/packaging systems: A review. Food Additives & Contaminants, 21(12), 1186–1202. https://doi.org/10.1080/02652030400019380 DOI: https://doi.org/10.1080/02652030400019380

111. Yao, M., He, L., McClements, D. J., & Xiao, H. (2015). Uptake of gold nanoparticles by intestinal epithelial cells: Impact of particle size on their absorption, accumulation, and toxicity. Journal of Agricultural and Food Chemistry, 63(50), 10954–10966. https://doi.org/10.1021/acs.jafc.5b03242 DOI: https://doi.org/10.1021/acs.jafc.5b03242

112. He, X., Fu, P., Aker, W. G., & Hwang, H.-M. (2018). Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. Journal of Environmental Science and Health, Part C, 36(1), 21–42. https://doi.org/10.1080/10590501.2017.1418793 DOI: https://doi.org/10.1080/10590501.2017.1418793

113. Fröhlich, E. E., & Fröhlich, E. (2016). Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. International Journal of Molecular Sciences, 17(4), 509. https://doi.org/10.3390/ijms17040509 DOI: https://doi.org/10.3390/ijms17040509

114. Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall, B. D., & Pounds, J. G. (2007). Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological Sciences, 95(2), 300–312. https://doi.org/10.1093/toxsci/kfl165 DOI: https://doi.org/10.1093/toxsci/kfl165

115. Aschberger, K., Gottardo, S., Amenta, V., Arena, M., Moniz, F., Bouwmeester, H., Brandhoff, P., Mech, A., Pesudo, L., Rauscher, H., Schoonjans, R., Vettori, M., & Peters, R. J. B. (2015). Nanomaterials in food: Current and future applications and regulatory aspects. Journal of Physics: Conference Series, 617(1), 012032. https://doi.org/10.1088/1742-6596/617/1/012032 DOI: https://doi.org/10.1088/1742-6596/617/1/012032

116. EFSA Scientific Committee, Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., Ockleford, C., Ricci, A., Rychen, G., Schlatter, J. R., Silano, V., Solecki, R., Turck, D., Younes, M., Chaudhry, Q., Cubadda, F., … Mortensen, A. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health [JB]. EFSA Journal, 16(7). https://doi.org/10.2903/j.efsa.2018.5327 DOI: https://doi.org/10.2903/j.efsa.2018.5327

117. Oualikene-Gonin, W., Sautou, V., Ezan, E., Bastos, H., Bellissant, É., Belgodère, L., Maison, P., & Ankri, J., & the Scientific Advisory Board of the ANSM (2023). Regulatory assessment of nano-enabled health products in public health interest: Position of the scientific advisory board of the French National Agency for the Safety of Medicines and Health Products. Frontiers in Public Health, 11, 1125577. https://doi.org/10.3389/fpubh.2023.1125577 DOI: https://doi.org/10.3389/fpubh.2023.1125577

118. Card, J. W., Jonaitis, T. S., Tafazoli, S., & Magnuson, B. A. (2011). An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Critical Reviews in Toxicology, 41(1), 22–49. https://doi.org/10.3109/10408444.2010.524636 DOI: https://doi.org/10.3109/10408444.2010.524636

119. Bumbudsanpharoke, N., Choi, J., & Ko, S. (2015). Applications of nanomaterials in food packaging. Journal of Nanoscience and Nanotechnology, 15(9), 6357–6372. https://doi.org/10.1166/jnn.2015.10847 DOI: https://doi.org/10.1166/jnn.2015.10847

120. D’Almeida, A. P., & de Albuquerque, T. L. (2024). Innovations in food packaging: From bio-based materials to smart packaging systems. Processes, 12(10), 2085. https://doi.org/10.3390/pr12102085 DOI: https://doi.org/10.3390/pr12102085

121. Harmsen, P. F. H., Hackmann, M. M., & Bos, H. L. (2014). Green building blocks for bio-based plastics. Biofuels, Bioproducts and Biorefining, 8(4), 306–324. https://doi.org/10.1002/bbb.1468 DOI: https://doi.org/10.1002/bbb.1468

122. Sohail, M., Sun, D.-W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662. https://doi.org/10.1080/10408398.2018.1449731

123. Arifin, M. A. Z., Adzahan, N. M., Abedin, N. H. Z., & Lasik-Kurdyś, M. (2023). Utilization of food waste and by-products in the fabrication of active and intelligent packaging for seafood and meat products. Foods, 12(3), 456. https://doi.org/10.3390/foods12030456 DOI: https://doi.org/10.3390/foods12030456

124. Teferi, D. A., & Kassa, M. G. (2025). Cactus-based biopolymers: A review on sustainable innovations in edible packaging, UV protection, antioxidant films, and industrial applications. Food Science & Nutrition, 13(12), e71163. https://doi.org/10.1002/fsn3.71163 DOI: https://doi.org/10.1002/fsn3.71163

125. Salgado, P. R., Di Giorgio, L. D., Musso, Y. S., & Mauri, A. N. (2021). Recent developments in smart food packaging focused on biobased and biodegradable polymers. Frontiers in Sustainable Food Systems, 5, 630393. https://doi.org/10.3389/fsufs.2021.630393

126. Sohail, M., Sun, D.-W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662. https://doi.org/10.1080/10408398.2018.1449731 DOI: https://doi.org/10.1080/10408398.2018.1449731

127. Salgado, P. R., Di Giorgio, L. D., Musso, Y. S., & Mauri, A. N. (2021). Recent developments in smart food packaging focused on biobased and biodegradable polymers. Frontiers in Sustainable Food Systems, 5, 630393. https://doi.org/10.3389/fsufs.2021.630393

128. Boukid, F. (2022). Smart food packaging: An umbrella review of scientific publications. Coatings, 12(12), 1949. https://doi.org/10.3390/coatings12121949 DOI: https://doi.org/10.3390/coatings12121949

129. Yousefi, H., Su, H.-M., Imani, S. M., Alkhaldi, K., Filipe, C. D. M., & Didar, T. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors, 4(7), 1978–1995. https://doi.org/10.1021/acssensors.9b00440 DOI: https://doi.org/10.1021/acssensors.9b00440

130. Setyawati, M. I., Zhao, Z., & Ng, K. (2020). Transformation of nanomaterials and its implications in gut nanotoxicology. Small, 16(41), 2001246. https://doi.org/10.1002/smll.202001246 DOI: https://doi.org/10.1002/smll.202001246

131. Muncke, J., Backhaus, T., Geueke, B., Maffini, M. V., Martin, O. V., Myers, J. P., Soto, A. M., Trasande, L., Trier, X., & Scheringer, M. (2017). Scientific challenges in the risk assessment of food contact materials. Environmental Health Perspectives, 125(9), 095001. https://doi.org/10.1289/EHP644 DOI: https://doi.org/10.1289/EHP644

132. Salgado, P. R., Di Giorgio, L. D., Musso, Y. S., & Mauri, A. N. (2021). Recent developments in smart food packaging focused on biobased and biodegradable polymers. Frontiers in Sustainable Food Systems, 5, 630393. https://doi.org/10.3389/fsufs.2021.630393 DOI: https://doi.org/10.3389/fsufs.2021.630393

133. Young, E., Mirosa, M., & Bremer, P. (2020). A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, 63. https://doi.org/10.3389/fsufs.2020.00063

134. Young, E., Mirosa, M., & Bremer, P. (2020). A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, 63. https://doi.org/10.3389/fsufs.2020.00063 DOI: https://doi.org/10.3389/fsufs.2020.00063

135. Poli, M., Malagas, K., Nomikos, S., Papapostolou, A., & Vlassas, G. (2023). An overview of the impact of the food sector “intelligent packaging” and “smart packaging.” European Journal of Interdisciplinary Studies, 15(2), 173–189. https://doi.org/10.24818/ejis.2023.09 DOI: https://doi.org/10.24818/ejis.2023.09

Downloads

Published

2026-01-12

Issue

Section

Articles

How to Cite

Smart and sustainable food packaging: recent advances in active/intelligent technologies and future directions. (2026). Scifood, 20(1), 1-19. https://doi.org/10.5219/scifood.83

Similar Articles

1-10 of 41

You may also start an advanced similarity search for this article.