Beef quality and sensory traits in relation to subcutaneous fat color in dairy bulls

Authors

  • Olha Kruk National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies Heroiv Oborony St., 15, 03041, Kyiv, Ukraine, Tel.: +38(098)-64-72-596 Author https://orcid.org/0000-0001-9975-8994
  • Anatolii Ugnivenko National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies Heroiv Oborony St., 15, 03041, Kyiv, Ukraine, Tel.: (044) 527-82-32 Author https://orcid.org/0000-0001-6278-8399
  • Dmytro Nosevych National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies Heroiv Oborony St., 15, 03041, Kyiv, Ukraine, Tel.: (044) 527-82-32 Author https://orcid.org/0000-0003-2495-2084
  • Tetiana Antoniuk National University of Life and Environmental Sciences of Ukraine, Faculty of Livestock Raising and Water Bioresources, Department of Milk and Meat Production Technologies Heroiv Oborony St., 15, 03041, Kyiv, Ukraine, Tel.: (044) 527-82-32 Author https://orcid.org/0000-0001-5045-5546
  • Nataliia Slobodyanyuk National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Meat, Fish, and Seafood Technology, Vystavkova Str., 16, 03041, Kyiv, Ukraine, Tel.: +380(98) 276-85-08 Author https://orcid.org/0000-0002-3646-1226
  • Valentyna Israelian National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of technology of meat, fish and marine products, Vystavkova Str., 16, Kyiv, 03041, Ukraine, Tel.: +38(096) 724-03-99 Author https://orcid.org/0000-0002-7242-3227
  • Nataliia Holembovska National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of technology of meat, fish and marine products, Vystavkova Str., 16, Kyiv, 03041, Ukraine, Tel.: +38(096) 206-62-76 Author https://orcid.org/0000-0001-8159-4020
  • Tatyana Naumenko National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Standardization and Certifying of Agricultural Products, Vystavkova Str., 16, 03041, Kyiv, Ukraine, Tel.: +38(093) 921-96-80 Author https://orcid.org/0000-0003-0098-927X

DOI:

https://doi.org/10.5219/scifood.35

Keywords:

meat, productivity, carcass, color, tissue, morphological composition, sensory evaluation

Abstract

The study examines the impact of subcutaneous adipose tissue color on beef quality traits in 18–24-month-old Ukrainian Black-and-White dairy bulls. Using a 7-point scale adapted from Japanese beef grading standards, carcasses were divided into two groups based on fat color: moderately white and moderately yellow. Results showed that yellower fat was generally associated with heavier animals and carcasses, darker beef color, and increased connective tissue content. A tendency was observed for improved carcass muscle structure, such as larger muscle eye area and higher-grade muscle tissue, among carcasses with more yellowish fat. However, this was also associated with lower subcutaneous fat thickness, a slightly reduced water-holding capacity, and minor decreases in meat moisture and broth flavor characteristics. Notably, the fat color did not significantly influence the broth’s transparency or the tenderness and chewability of boiled meat. These findings suggest that adipose tissue color can reflect certain technological and sensory traits of beef, offering potential utility in carcass grading systems.

Metrics

Metrics Loading ...

References

1. Realini C. E., Kallas Z., Pérez-Juan M., Gómez I., Olleta J. L., Beriain M. J., Albertí P., Sañudo C. (2014). The relative importance of cues underlying Spanish consumers' beef choice and segmentation, and consumer liking of beef enriched with n-3 and CLA fatty acids. In Food Quality and Preference, (Vol. 33. рр. 74-85). Elsevier BV. https://doi.org/10.1016/j.foodqual.2013.11.007.

2. Haderlie S. A., Hieber J. K., Boles J. A., Berardinelli J. G., & Thomson J. M. (2023). Molecular Pathways for Muscle and Adipose Tissue Are Altered between Beef Steers Classed as Choice or Standard. In Animals, (Vol. 13, Issue 12, рр. 1947). PubMed. https://doi.org/10.3390/ani13121947

3. Parkinson, J. T., Cochran, H. J., Kieffer, J. D., Relling, A. E., Boyles, S. L., Kopec, R. E., & Garcia, L. G. (2024). The effects of different feeding strategies providing different levels of vitamin A on animal performance, carcass traits, and the conversion rate of subcutaneous fat color in cull-cows. In Translational Animal Science, (Vol. 8.). American Society of Animal Science. https://doi.org/10.1093/tas/txae071

4. China Department of Agriculture, China standards for grades of beef quality, China Standard Press, Beijing, 2000.

5. JMGA. Beef carcass grading standart. Japan meat grading association. (2000). Tokyo, Japan. Retrieved from: https://twinwoodcattle.com/sites/default/files/publications/2017-06/TWRA120_Japan_Beef_Carcass _Grading_Standard.pdf

6. Zhu, H., Wang, X., Sun, T., He, C., Zhang, L., Ma, T., & Chen, D. (2023). Development and Effect Verification of Beef Cattle Carcass Grading Camera Equipment System. In Frontiers in Business, Economics and Management, (Vol. 12, Issue 1, рр. 54-66). Darcy & Roy Press. https://doi.org/10.54097/fbem.v12i1.13758

7. Moloney, A. P., O'Riordan, E. G., Monahan, F. J., & Richardson, R. I. (2022). The colour and sensory characteristics of longissimus muscle from beef cattle that grazed grass or consumed concentrates prior to slaughter. In Journal of the Science of Food and Agriculture, (Vol. 102, Issue 1, рр. 113-120). John Wiley & Sons, https://doi.org/10.1002/jsfa.11337

8. Velásquez, C., Cancino-Baier, D., Quiñones-Diaz, J., Huaiquipan, R., Muñoz, A., Sepúlveda Becker, N., Diaz, R., Paz, E. A., Velázquez, L., Sepúlveda, G., Tapia, D., & Olivares, F. (2024). In the search for pastoral livestock systems that improve the meat quality: An exploratory study. Renewable Agriculture and Food Systems, 39. https://doi.org/10.1017/s1742170524000127

9. Kim, H.-J., Lee, S., Kumar, S. A., Jung, H.-Y., Kim, H.-P., Gil, J., Sun, C. W., & Jo, C. (2023). Comparison of Meat Quality From Hanwoo Cattle Having Yellow and White Carcass Fat. Meat and Muscle Biology, 7(1). https://doi.org/10.22175/mmb.16878

10. Trammell, T. (2024). Fat deposition, β-carotene, and vitamin a metabolism in bulls, steers, and heifers. https://digitalcommons.wku.edu/theses/3785

11. Janssen, J., Cammack, K., Legako, J., Cox, R., Grubbs, J. K., Underwood, K., Hansen, J., Kruse, C., & Blair, A. (2021). Influence of grain-and grass-finishing systems on carcass characteristics, meat quality, nutritional composition, and consumer sensory attributes of bison. In Foods, (Vol. 10, Issue 5, рр. 1060). MDPI. https://doi.org/10.3390/foods10051060

12. ISO/IEC 17025:2005. (2006). Retrieved from http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=50873

13. Law of Ukraine No. 249 On the Procedure for Carrying out Experiments and Experiments on Animals by Scientific Institutions. (2012, March). Retrieved from: https://zakon.rada.gov.ua/laws/show/z0416-12#Text

14. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. (1986). Retrieved from: https://rm.coe.int/168007a67b

15. Commission Regulation (EC). 2008. Commission Regulation (EC) No 1249/2008 of 10 December 2008 laying down detailed rules on the implementation of the Community scales for the classification of beef, pig and sheep carcasses and the reporting of prices thereof. Retrieved from: https://publications.europa.eu/en/publication-detail/-/publication/9716803a-8887-4956-9877-629031ec7723/language-en 23.11.2018

16. Order № 290 of 06 August 2004 On Approval of the Instruction on Evaluation of Boars and Sows for the Quality of Offspring in Specialized Testing Stations. Retrieved from: https://zakononline.com.ua/documents/show/250143___250208.

17. Klymenko, M. M., Vinnikova, L. H., Bereza, I. H., Honcharov, H. I., Pasichnyi, V. M., Bal-Prylypko, L. V., Kyshenko, I. I., Busha O. O., & Tkachenko, K. D. (2006). Technology of meat and meat products. Kyiv: Vyshcha osvita.

18. DSTU ISO 1443:2005. Meat and meat products. General specifications. Quality management systems – Requirements.

19. DSTU ISO 936:2008. Meat and meat products. Method of determination of mass total ash. Quality management systems – Requirements.

20. DSTU ISO 1442:2005. Meat and meat products. Method of determining moisture content. Quality management systems – Requirements.

21. DSTU ISO 2917:2001. Meat and meat products. Determination of pH (control method). Kyiv. State Committee of Ukraine on Technical Regulation and Consumer Policy. Quality management systems – Requirements.

22. Antoniuk, T. (2020). Technology of animal slaughter products. Methodical instruction and tasks for independent work for Bachelor Degree student of the specialty 204 – Animal products Mamefacturing and processing technology. Retrieved from:

https://nubip.edu.ua/site/default/files/u249/tehnologiya_produktiv_zaboyu_tvarin.

23. Council Regulation (EC) No. 1099/2009 of September 24, 2009 on the protection of animals at the time of death. Retrieved from: https://zakon.rada.gov.ua/laws/show/984_028-09#Text.

24. Pesonen, M. (2020). Growth performance, carcass characteristics and meat quality of different beef breeds in typical Finnish production systems: Doctoral Dissertation.

25. Greenwood, P. L. (2021). Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices, increase. In Animal, (Vol. 15, рр. 100295). Elsevier. https://doi.org/10.1016/j.animal.2021.10029552

26. Romo-Valdez, A. M., Pérez-Linares, C., Ríos-Rincón, F. G., Figueroa-Saavedra, F., Barreras-Serrano, A., Castro-Pérez, B. I., Sánchez-López, Е., & Cazarez, G. V. C. (2024). Influencia del espacio vital en corral sobre las variables productivas, calidad de la canal y carne en novillos Holstein. In Revista Mexicana de Ciencias Pecuarias, (Vol. 15, Issue 2, рр. 393-403). Instituto Nacional de Investigaciones Forestales. https://doi.org/10.22319/rmcp.v15i2.6449

27. Ugnivenko A., & Natalych O. (2023). Growth and meat productivity of bulls depending on the similarity of their blood group B antigens with mothers. In Animal Science and Food Technology, (Vol. 14, Issue 2. рр. 89-99). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.2.2023.89

28. Gagaoua, M., Picard, B., & Monteils, V. (2018). Associations among animal, carcass, muscle characteristics, and fresh meat color traits in Charolais cattle. In Meat science, (Vol. 140, рр. 145-156). Elsevier. https://doi.org/10.1016/j.meatsci.2018.03.004

29. Ugnivenko A., & Natalych O. (2022). Meat production and growth of internal organs and adipose tissue in bulls, obtained from the selection of their parents according to the index of similarity of system B antigens of blood groups. In Animal Science and Food Technology, (Vol. 13, Issue 1, рр. 57-65). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.13(1).2022.57-65

30. Rutherford, N. H., Gordon, A. W., Arnott, G., & Lively, F. O. (2020). The effect of beef production system on the health, performance, carcass characteristics, and meat quality of Holstein Bulls. In Animals, (Vol. 10, Issue 10, рр. 1922). MDPI. https://doi.org/10.3390/ani10101922

31. Kruk, O., Ugnivenko, A., Nosevych, D., Natalich О., Gruntkovskyi, M., Kharsika, I., Androshchuk, O., & Stetsiuk, I. (2024). The effect of the carcass fat thickness on the qualitative technological and sensory attributes of beef. In Potravinarstvo Slovak Journal of Food Sciences, (Vol. 18, рр. 977-992). HACCP Consulting. https://doi.org/10.5219/2021

32. Nogalski, Z., Pogorzelska-Przybyłek, P., Sobczuk-Szul, M., & Purwin, C. (2019). The effect of carcase conformation and fat cover scores (EUROP system) on the quality of meat from young bulls. In Italian Journal of Animal Science, (Vol. 18, рр. 615-620). Informa UK Limited. https://doi.org/10.1080/1828051X.2018.1549513

33. Kruk, O., Ugnivenko, A., Antoniuk, T., Kolisnyk, O., Slobodyanyuk, N., Nosevych, D., Naumenko, T., & Gruntkovskyi, M. (2024). Evaluation of beef carcass quality using the muscle eye area m. longissimus dorsi. In Potravinarstvo Slovak Journal of Food Sciences, (Vol. 18, рр. 619–632). HACCP Consulting. https://doi.org/10.5219/1989

34. Yüksel, S., & Karaçuhalilar, A. (2024). Slaughter and carcass characteristics, and meat quality in Holstein Friesian, Eastern Anatolian Red and crossbreed (F1) bulls fed at high altitude. In Journal of Central European Agriculture, (Vol. 25, Issue 4, рр. 866-875). University of Zagreb Faculty of Agriculture. https://doi.org/10.5513/JCEA01/25.4.4349

35. Kruk, O., & Ugnivenko, A. (2024). Quality characteristics of beef depending on its marbling. In Animal Science and Food Technology, (Vol. 15, Issue 3, рр. 58-71). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.3.2024.58

36. Inoue, K., Shoji, N., Honda, T., & Oyama, K. (2017). Genetic relationships between meat quality traits and fatty acid composition in Japanese black cattle. In Animal Science Journal, (Vol. 88, Issue 1, pp. 11-18). John Wiley & Sons. https://doi.org/10.1111/asj.12613

37. Santiago, B., Baldassini, W., Neto, O. M., Chardulo, L. A., Torres, R., Pereira, G., Сuri, R., Chiaratti, M.R., Padilha, P., Alessandroni, L., & Gagaoua, M. (2023). Post-mortem muscle proteome of crossbred bulls and steers: Relationships with carcass and meat quality. In Journal of Proteomics, (Vol. 278, рр. 104871). Elsevier. https://doi.org/10.1016/j.jprot.2023.104871

38. Park, M. K., & Choi, Y. S. (2025). Effective strategies for understanding meat flavor: A review. In Food Science of Animal Resources, (Vol. 45, Issue 1, рр. 165-184). Korean Society for Food Science of Animal Resources. https://doi.org/10.5851/kosfa.2024.e124

39. Lee, W.Y., Dinh, P.T.N., Chung, Y., Lee, H-J., Koh, Y.J., Kim, H.J. (2025). Precise phenotyping method using image data for carcass marbling score in Hanwoo cattle. In PLoS ONE. (Vol. 20, Issue 1). e0318058. PLoS ONE https://doi.org/10.1371/journal. pone.0318058

40. Brito, G., Soares de Lima, J. M., Del Campo, M., Luzardo, S., Correa, D., & Montossi, F. (2024). The implementation of grading systems for beef carcass value differentiation: the Uruguayan experience. In Animal Frontiers, (Vol. 14, Issue 2, рр. 29-34). American Society of Animal Science. https://doi.org/10.1093/af/vfae004

41. Ju, M. S., Jo, Y. H., Kim, Y. R., Ghassemi Nejad, J., Lee, J. G., & Lee, H. G. (2024). Supplementation of complex natural feed additive containing (C. militaris, probiotics and red ginseng by-product) on rumen-fermentation, growth performance and carcass characteristics in Korean native steers. In Frontiers in Veterinary Science, (Vol. 10, рр. 1300518). PubMed. https://doi.org/10.3389/fvets.2023.1300518

42. Sobczuk-Szul M, Mochol M, Nogalski Z, Pogorzelska-Przybyłek P, Momot M. (2021). Fattening of Polish Holstein-Friesian × Limousin Bulls under Two Production Systems and Its Effect on the Fatty Acid Profiles of Different Fat Depots. In Animals, (Vol. 11, рр. 3078). MDPI. https://doi.org/10.3390/ani11113078

43. Ma, X., Zhang, D., Yang, Z., Sun, M., Mei, C., & Zan, L. (2025). Bta-miR-484 regulates proliferation and apoptosis of bovine intramuscular preadipocytes via targeting MAP3K9 to inhibit the JNK signaling pathway. In International Journal of Biological Macromolecules, (Vol. 286, рр. 138082). PubMed. https://doi.org/10.1016/j.ijbiomac.2024.138082

44. Salatta, B. M., Muniz, M. M., Fonseca, L. F., Mota, L. F., Teixeira, C. S., Serna-García, М., Arikawa, L. М., Schmidt, Р. І., Caivio Nasner, S. L., dos Santos Silva, D. В., Cravo Pereira, А. S., Baldi, F., Frezarim, G. B., & Albuquerque, L. G. (2025). Differentially expressed messenger RNA isoforms in beef cattle skeletal muscle with different fatty acid profiles. In Meat Science, (рр. 109751). PubMed. https://doi.org/10.1016/j.meatsci.2025.109751

45. Yang, J., Chen, X., Duan, X., Li, K., Cheng, H., Sun, G., Luo, X., Hopkins, D. L., Holman, B. W. B., Zhang, Y., & Song, E. (2024). Investigation of oxygen packaging to maintain beef color stability and microbiology safety after periods of long-term superchilled storage. In Meat Science, (Vol. 215, pp. 109548). Elsevier. https://doi.org/10.1016/j.meatsci.2024.109548

46. Hastie, M., Hepworth, G., Hillman, A., Pfeiffer, C., Cowled, B., & Warner, R. (2024). Bushfire exposure is associated with darker color of beef loin at grading. In Livestock Science, (Vol. 287, pp. 105527). Elsevier. https://doi.org/10.1016/j.livsci.2024.105527

47. Correa, D., del Campo, M., Luzardo, S., de Souza, G., Álvarez, C., Font-i-Furnols, M., & Brito, G. (2024) «Impact of Aging Methods and Frozen Storage on Beef Quality Attributes from Different Finishing Diets». In Meat and Muscle Biology, (Vol. 8, Issue 1, 17695, pp. 1-16). Iowa State University. https://doi.org/10.22175/mmb.17695

48. Blanco, M., Ripoll, G., Delavaud, C., & Casasús, I. (2020). Performance, carcass and meat quality of young bulls, steers and heifers slaughtered at a common body weight. In Livestock Science, (Vol. 240, pp. 104156). Elsevier. https://doi.org/10.1016/j.livsci.2020.104156

49. Krauskopf, M. M., de Araújo, C. D. L., dos Santos-Donado, P. R., Dargelio, M. D. B., Manzi, J. A. S., Venturini, A. C., Balieiro, J. C. de C., Delgado, E. F., & Castillo, C. J. C. (2024). The effect of succinate on color stability of Bos indicus bull meat: pH-dependent effects during the 14-day aging period. In Food Research International, (Vol. 175, pp. 113688). Elsevier. https://doi.org/10.1016/j.foodres.2023.113688

50. Otto, J. R., Mwangi, F. W., Pewan, S. B., Adegboye, O. A., & Malau-Aduli, A. E. O. (2024). Muscle biopsy long-chain omega-3 polyunsaturated fatty acid compositions, IMF and FMP in Australian pasture-based Bowen Genetics Forest Pastoral Angus, Hereford, and Wagyu Beef Cattle. In BMC Veterinary Research, (Vol. 20, Issue 1, pp. 95-110). BioMed Central Ltd. https://doi.org/10.1186/s12917-024-03906-2

51. Erena, T., Belay, A., Hailu, D., Asefa, B. G., Geleta, M., & Deme, T. (2024). Modeling of Ethiopian Beef Meat Marbling Score Using Image Processing for Rapid Meat Grading. In Journal of Imaging, (Vol. 10, Issue 6, pp. 130-146). MDPI. https://doi.org/10.3390/jimaging10060130

52. Sugii, S., Wong, C. Y. Q., Lwin, A. K. O., & Chew, L. J. M. (2022). Reassessment of adipocyte technology for cellular agriculture of alternative fat. In Comprehensive Reviews in Food Science and Food Safety, (Vol. 21, Issue 5, pp. 4146-4163). PubMed. https://doi.org/10.1111/1541-4337.1302154

53. Kruk, O., & Ugnivenko, A. (2025). Characterization of beef traits in crossbred bulls with different severity of its marbling. In Animal Science and Food Technology, Vol. 16, Issue 1, pp. National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.1.2025.

54. Yamada T., Kamiya M., & Higuchi M. (2020). Fat depotspecific effects of body fat distribution and adipocyte size on intramuscular fat accumulation in Wagyu cattle. In Animal Science Journal, (Vol. 91, Issue 1). PubMed. https://doi.org/10.1111/asj.13449

55. Zurbriggen, G. A., Maglietti, C. S., Pouzo, L. B., Testa, M. L., Riffel, S. L., Elizalde, J. C., & Pavan, E. (2022). Extending the feeding period beyond 8.0 mm of subcutaneous fat reduces feed efficiency without improving meat colour and tenderness of non-implanted feedlot steers. In Journal of Animal and Feed Sciences, (Vol. 31, Issue 4, рр. 1-11). Journal hosting platform by Bentus. https://doi.org/10.22358/jafs/151153/2022

56. Meat Standards Australia (MSA). (2015). Retriewed from: https://www.mla.com.au/marketing-beef-and-lamb/meat-standards-australia/

57. Mushtruk, M., Mushtruk, N., Slobodyanyuk, N., Vasyliv, V., Zheplinska, M. (2024). Enhanced energy independence: converting animal fat into biodiesel. In International Journal of Environmental Studies, (Vol. 81, Issue 1, pp. 134-144). Informa UK Limited. https://doi.org/10.1080/00207233.2024.2314860

58. Bal-Prylypko, L., Kanishchev, O., Mushtruk, M., & Leonova, B. (2024). Development of technology for extended-shelf-life meat products. In Animal Science and Food Technology, (Vol. 15, Issue 4, pp. 132-149). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.4.2024.132

59. Bal-Prylypko, L., Danylenko, S., Mykhailova, O., Nedorizanyuk, L., Bovkun, A., Slobodyanyuk, N., Omelian, A. & Ivaniuta, A. (2024). Influence ofstarter cultures on microbiological and physical-chemical parameters of dry-cured products. In Potravinarstvo Slovak Journal of Food Sciences, (Vol. 18, p. 313 – 330). HACCP Consulting. https://doi.org/10.5219/1960

60. Bal-Prylypko, L., Nikolaenko, M., Mushtruk, M., Nazarenko, M., & Beiko, L. (2024). Physical and mathematical modelling of the process of cooking minced meat with spelt flour and champignon mushrooms. In Animal Science and Food Technology, (Vol. 15, Issue 2, рр. 38-55). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.2.2024.38

61. Shtonda, O., Israelian, V., Antoniuk, T., Slobodianiuk, N., & Tyshchenko, L. (2024). Efficiency of using spicy and aromatic plant ingredients in the technology of semi-smoked sausages. In Animal Science and Food Technology, (Vol. 15, Issue 2, рр. 119-135). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.2.2024.119

62. Palamarchuk, I., Mushtruk, M., Vasyliv, V., Stefan, E., Priss, O., Babych, I., Karpovych, I., & Pushanko, N. (2024). Modelling the centrifugal mixing process of minced meat to optimise the production of chopped meat semi-finished products. In Potravinarstvo Slovak Journal of Food Sciences, (Vol. 18, pр. 297–312). HACCP Consulting. https://doi.org/10.5219/1959

63. Kryzhova, Yu., Slobodenyuk, N., & Moskalenko, I. (2023). Application of modern technologies to improve the quality of sausage products. Animal Science and Food Technology. (Vol. 14, Issue 1, pp. 49 – 64). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.1.2023.49

64. McNamee A., Keane M. G., Kenny D., O’Riordan E., Dunne P. G., & Moloney A. (2014). Colour of subcutaneous adipose tissue and colour and tenderness of the longissimus thoracis et lumborum muscle from Holstein–Friesian, Norwegian RedxHolstein–Friesian and JerseyxHolstein-Friesian cattle slaughtered at two live weights as bulls or steers. In Agricultural and Food Science, (Vol. 23, Issue 4, pр. 266-277). https://doi.org/10.23986/afsci.46431

65. Xie, X.X., Meng, Q.X., Liu, P., Li, D.Y., Ren, L.P. (2012). Effect of high voltage electrostatic field aging on meat quality of beef. In Journal of China Agricultural University, (Vol. 17, Issue 5, pp. 144-148). China Agricultural University.

66. Caro-Hernández J. M., Ramos-Juarez J. A., Hernández-Mendo O., & Aranda-Ibáñez E. M. (2017). Color of the fat tissue of young beef bulls finished with sugar cane (Saccharum spp.) ensilage.

67. Matvieiev, M., Bila, L., Ugnivenko, A., Nosevych, D., Getya, A., Tyasi, T. L. (2025). Application of Data Mining Algorithms For Estimating Live Body Weight From Linear Body Measurements of Ukrainian Beef Cattle Breed. In Appl. Ecol. Environ. Res., (Vol. 23, Issue 2, рр. 1853-1864). ALÖKI Kft. http://dx.doi.org/10.15666/aeer/2302_1853186

Downloads

Published

2025-06-03

Issue

Section

Articles

How to Cite

Beef quality and sensory traits in relation to subcutaneous fat color in dairy bulls. (2025). Scifood, 19(1), 327-342. https://doi.org/10.5219/scifood.35

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.