Advancements in post-harvest techniques for preserving fresh produce: a comprehensive review
DOI:
https://doi.org/10.5219/scifood.87Keywords:
Post-harvest technology, edible coating, active packaging, intelligent packaging, storageAbstract
One of the biggest constraints in the food industry is the economic transportation of healthy food products with reduced post-harvest losses. Edible coatings are bio-based films applied to fruits and vegetables to enhance their shelf life during post-harvest storage and distribution. This review critically evaluates recent advances in edible coating and packaging technologies for post-harvest preservation of fruits and vegetables. Food packaging designed from nature's building blocks, such as sugars, amino acids, and fats, has long reflected exemplary success in maintaining the freshness and quality of fresh foods. The literature is categorised into polysaccharide, protein, lipid-based, and composite edible coatings, as well as active and intelligent packaging systems. Emerging technologies, especially 3D printing, hold great promise for developing unprecedented surface topography and tailored features, enabling the controlled addition of beneficial compounds. In contrast, food packaging is a functional barrier, offering essential protection against environmental assailants such as UV light, oxygen, microbial penetration, and water vapor. Freshness-retaining packaging technologies employ agents such as antioxidants, charcoal for gas management, and moisture managers, which play a valuable role in preserving the quality and nutritional content. Across the reviewed studies, these systems demonstrated shelf-life extensions ranging from several days to multiple weeks, along with reduced weight loss, delayed microbial spoilage, and improved physicochemical quality. Further, the growing use of intelligent packaging with sensors and freshness indicators enables real-time quality and safety inspections along the supply chain. Despite these advancements, challenges remain regarding large-scale applicability, cost-effectiveness, sensory acceptance, and regulatory standardisation. This study concludes that a sensible, well-designed blend of tailored food wraps and advanced storage protocols forms a strong alliance with high potential to jointly provide robust protection, conserve nutrients, and substantially prolong the freshness of a variety of fresh produce.
References
1. Islam, J., & Kabir, Y. (2019). Effects and Mechanisms of Antioxidant-Rich Functional Beverages on Disease Prevention. In Functional and Medicinal Beverages (pp. 157–198). Elsevier. https://doi.org/10.1016/b978-0-12-816397-9.00005-4
2. Wang, D. D., Li, Y., Bhupathiraju, S. N., Rosner, B. A., Sun, Q., Giovannucci, E. L., Rimm, E. B., Manson, J. E., Willett, W. C., Stampfer, M. J., & Hu, F. B. (2021). Fruit and Vegetable Intake and Mortality. Circulation, 143(17), 1642–1654. https://doi.org/10.1161/circulationaha.120.048996
3. Naegeli, H., Bresson, L., Dalmay, T., Dewhurst, I. C., Epstein, M. M., Guerche, P., Hejatko, J., Moreno, F. J., Mullins, E., Nogué, F., Rostoks, N., Sánchez Serrano, J. J., Savoini, G., Veromann, E., Veronesi, F., Bonsall, M. B., Mumford, J., Wimmer, E. A., Devos, Y., . . . Firbank, L. G. (2020). Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA Journal, 18(11), e06297. https://doi.org/10.2903/j.efsa.2020.6297
4. Lisboa, H. M., Pasquali, M. B., dos Anjos, A. I., Sarinho, A. M., de Melo, E. D., Andrade, R., Batista, L., Lima, J., Diniz, Y., & Barros, A. (2024). Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability. Sustainability, 16(18), 8223. https://doi.org/10.3390/su16188223
5. Ma, X., Li, F., Chen, Y., Chang, Y., Lian, X., Li, Y., Ye, L., Yin, T., & Lu, X. (2022). Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus. Plants, 11(19), 2547. https://doi.org/10.3390/plants11192547
6. Carrasco-Correa, E. J., Mompó-Roselló, Ò., & Simó-Alfonso, E. F. (2023). Calcium oxide nanofertilizer as alternative to common calcium products for the improvement of the amount of peel fruit calcium. Environmental Technology & Innovation, 31, 103180. https://doi.org/10.1016/j.eti.2023.103180
7. Wang, X., Bao, Q., Sun, G., & Li, J. (2022). Application of Homemade Organic Fertilizer for Improving Quality of Apple Fruit, Soil Physicochemical Characteristics, and Microbial Diversity. Agronomy, 12(9), 2055. https://doi.org/10.3390/agronomy12092055
8. Priyadarshi, R., Ezati, P., & Rhim, J.-W. (2021). Recent Advances in Intelligent Food Packaging Applications Using Natural Food Colorants. ACS Food Science & Technology, 1(2), 124–138. https://doi.org/10.1021/acsfoodscitech.0c00039
9. Nunes, C., Silva, M., Farinha, D., Sales, H., Pontes, R., & Nunes, J. (2023). Edible Coatings and Future Trends in Active Food Packaging–Fruits’ and Traditional Sausages’ Shelf Life Increasing. Foods, 12(17), 3308. https://doi.org/10.3390/foods12173308
10. Sharma, B., Nigam, S., Verma, A., Garg, M., Mittal, A., & Sadhu, S. D. (2023). A Biogenic Approach to Develop Guava Derived Edible Copper and Zinc Oxide Nanocoating to Extend Shelf Life and Efficiency for Food Preservation. Journal of Polymers and the Environment, 32(1), 331–344. https://doi.org/10.1007/s10924-023-02972-1
11. Müller, P., & Schmid, M. (2019). Intelligent Packaging in the Food Sector: A Brief Overview. Foods, 8(1), 16. https://doi.org/10.3390/foods8010016
12. Paidari, S., Zamindar, N., Tahergorabi, R., Kargar, M., Ezzati, S., shirani, N., & Musavi, S. H. (2021). Edible coating and films as promising packaging: a mini review. Journal of Food Measurement and Characterization, 15(5), 4205–4214. https://doi.org/10.1007/s11694-021-00979-7
13. Ma, Y., Yang, W., Xia, Y., Xue, W., Wu, H., Li, Z., Zhang, F., Qiu, B., & Fu, C. (2022). Properties and Applications of Intelligent Packaging Indicators for Food Spoilage. Membranes, 12(5), 477. https://doi.org/10.3390/membranes12050477
14. Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods, 12(5), 1057. https://doi.org/10.3390/foods12051057
15. Gidado, M. J., Gunny, A. A. N., Gopinath, S. C. B., Ali, A., Wongs-Aree, C., & Salleh, N. H. M. (2024). Challenges of postharvest water loss in fruits: Mechanisms, influencing factors, and effective control strategies – A comprehensive review. Journal of Agriculture and Food Research, 17, 101249. https://doi.org/10.1016/j.jafr.2024.101249
16. Iversen, L. J. L., Rovina, K., Vonnie, J. M., Matanjun, P., Erna, K. H., ‘Aqilah, N. M. N., Felicia, W. X. L., & Funk, A. A. (2022). The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules, 27(17), 5604. https://doi.org/10.3390/molecules27175604
17. Trajkovska Petkoska, A., Daniloski, D., D’Cunha, N. M., Naumovski, N., & Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981. https://doi.org/10.1016/j.foodres.2020.109981
18. Armghan Khalid, M., Niaz, B., Saeed, F., Afzaal, M., Islam, F., Hussain, M., Mahwish, Muhammad Salman Khalid, H., Siddeeg, A., & Al-Farga, A. (2022). Edible coatings for enhancing safety and quality attributes of fresh produce: A comprehensive review. International Journal of Food Properties, 25(1), 1817–1847. https://doi.org/10.1080/10942912.2022.2107005
19. Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers, 11(12), 2039. https://doi.org/10.3390/polym11122039
20. Khin, M. N., Ahammed, S., Kamal, Md. M., Saqib, M. N., Liu, F., & Zhong, F. (2024). Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds. Food Hydrocolloids for Health, 6, 100182. https://doi.org/10.1016/j.fhfh.2024.100182
21. Bhaskar, R., Zo, S. M., Narayanan, K. B., Purohit, S. D., Gupta, M. K., & Han, S. S. (2023). Recent development of protein-based biopolymers in food packaging applications: A review. Polymer Testing, 124, 108097. https://doi.org/10.1016/j.polymertesting.2023.108097
22. Mohanty, B., & Hauzoukim, S. S. (2020). Functionality of Protein-Based Edible Coating-Review. Journal of Entomology and Zoology Studies, 8(4), 1432-1440.
23. Xu, J., & Li, Y. (2023). Wheat gluten–based coatings and films: Preparation, properties, and applications. Journal of Food Science, 88(2), 582–594. https://doi.org/10.1111/1750-3841.16454
24. Belay, Z. A., Mashele, T. G., Botes, W. J., & Caleb, O. J. (2023). Effects of zein-nisin edible coating on physicochemical and microbial load of ‘Granny Smith’ apple after long term storage. CyTA - Journal of Food, 21(1), 334–343. https://doi.org/10.1080/19476337.2023.2199833
25. Zhang, R., Liu, R., Han, J., Ren, L., & Jiang, L. (2024). Protein-Based Packaging Films in Food: Developments, Applications, and Challenges. Gels, 10(7), 418. https://doi.org/10.3390/gels10070418
26. Mostafavi, F. S., & Zaeim, D. (2020). Polymer Coatings for Food Applications. In Polymer Coatings (pp. 189–232). Wiley. https://doi.org/10.1002/9781119655145.ch10
27. Rebezov, M., Oboturova, N., Statsenko, E., Bachukin, V., Katkova, E., Khayrullin, M., Neverova, O., & Zinina, O. (2023). Crosslinking methods for improving the properties of soy-protein based films for meat packaging: a review. Potravinarstvo Slovak Journal of Food Sciences, 17, 635–648. https://doi.org/10.5219/1892
28. Majumder, S., Huang, S., Zhou, J., Wang, Y., & George, S. (2023). Tannic acid-loaded halloysite clay grafted with silver nanoparticles enhanced the mechanical and antimicrobial properties of soy protein isolate films for food-packaging applications. Food Packaging and Shelf Life, 39, 101142. https://doi.org/10.1016/j.fpsl.2023.101142
29. Nešić, A., Cabrera-Barjas, G., Dimitrijević-Branković, S., Davidović, S., Radovanović, N., & Delattre, C. (2019). Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules, 25(1), 135. https://doi.org/10.3390/molecules25010135
30. Susmita Devi, L., Kalita, S., Mukherjee, A., & Kumar, S. (2022). Carnauba wax-based composite films and coatings: recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends in Food Science & Technology, 129, 296–305. https://doi.org/10.1016/j.tifs.2022.09.019
31. Liyanapathiranage, A., Dassanayake, R. S., Gamage, A., Karri, R. R., Manamperi, A., Evon, P., Jayakodi, Y., Madhujith, T., & Merah, O. (2023). Recent Developments in Edible Films and Coatings for Fruits and Vegetables. Coatings, 13(7), 1177. https://doi.org/10.3390/coatings13071177
32. Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A.-M. (2020). Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
33. Devi, L. S., Jaiswal, A. K., & Jaiswal, S. (2024). Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Current Research in Food Science, 8, 100720. https://doi.org/10.1016/j.crfs.2024.100720
34. Perumal, A. B., Huang, L., Nambiar, R. B., He, Y., Li, X., & Sellamuthu, P. S. (2022). Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chemistry, 375, 131810. https://doi.org/10.1016/j.foodchem.2021.131810
35. Yaashikaa, P. R., Kamalesh, R., Senthil Kumar, P., Saravanan, A., Vijayasri, K., & Rangasamy, G. (2023). Recent advances in edible coatings and their application in food packaging. Food Research International, 173, 113366. https://doi.org/10.1016/j.foodres.2023.113366
36. Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. R. (2020). Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustainable Materials and Technologies, 26, e00215. https://doi.org/10.1016/j.susmat.2020.e00215
37. Kumar, N., & Neeraj. (2019). Polysaccharide-based component and their relevance in edible film/coating: a review. Nutrition & Food Science, 49(5), 793–823. https://doi.org/10.1108/nfs-10-2018-0294
38. Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E., & Hortyńska, P. (2021). Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy, 11(5), 813. https://doi.org/10.3390/agronomy11050813
39. Shiekh, K. A., Ngiwngam, K., & Tongdeesoontorn, W. (2021). Polysaccharide-Based Active Coatings Incorporated with Bioactive Compounds for Reducing Postharvest Losses of Fresh Fruits. Coatings, 12(1), 8. https://doi.org/10.3390/coatings12010008
40. Pillai, A. R. S., Eapen, A. S., Zhang, W., & Roy, S. (2024). Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods, 13(10), 1529. https://doi.org/10.3390/foods13101529
41. Castro-Cegrí, A., Ortega-Muñoz, M., Sierra, S., Carvajal, F., Santoyo-Gonzalez, F., Garrido, D., & Palma, F. (2023). Application of polysaccharide-based edible coatings to improve the quality of zucchini fruit during postharvest cold storage. Scientia Horticulturae, 314, 111941. https://doi.org/10.1016/j.scienta.2023.111941
42. Tabassum, N., & Khan, M. A. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae, 259, 108853. https://doi.org/10.1016/j.scienta.2019.108853
43. Liu, C., Jin, T., Liu, W., Hao, W., Yan, L., & Zheng, L. (2021). Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT, 148, 111770. https://doi.org/10.1016/j.lwt.2021.111770
44. Shah, S., & Hashmi, M. S. (2020). Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Horticulture, Environment, and Biotechnology, 61(2), 279–289. https://doi.org/10.1007/s13580-019-00224-7
45. Panahirad, S., Naghshiband-Hassani, R., & Mahna, N. (2020). Pectin-based edible coating preserves antioxidative capacity of plum fruit during shelf life. Food Science and Technology International, 26(7), 583–592. https://doi.org/10.1177/1082013220916559
46. Wigati, L. P., Wardana, A. A., Tanaka, F., & Tanaka, F. (2023). Application of pregelatinized corn starch and basil essential oil edible coating with cellulose nanofiber as Pickering emulsion agent to prevent quality-quantity loss of mandarin orange. Food Packaging and Shelf Life, 35, 101010. https://doi.org/10.1016/j.fpsl.2022.101010
47. Dwivany, F. M., Aprilyandi, A. N., Suendo, V., & Sukriandi, N. (2020). Carrageenan Edible Coating Application Prolongs Cavendish Banana Shelf Life. International Journal of Food Science, 2020, 1–11. https://doi.org/10.1155/2020/8861610
48. Bai, Z., Lan, H., Li, J., Geng, M., Luo, D., Feng, J., Li, X., & Zhang, Y. (2024). Recycling of wheat gluten wastewater: Recovery of arabinoxylan and application of its film in cherry and strawberry preservation. Food Chemistry: X, 22, 101415. https://doi.org/10.1016/j.fochx.2024.101415
49. Maria Leena, M., Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2020). Edible coating with resveratrol loaded electrospun zein nanofibers with enhanced bioaccessibility. Food Bioscience, 36, 100669. https://doi.org/10.1016/j.fbio.2020.100669
50. Han, P., Guo, C.-P., Shui, G.-L., Pan, Z.-Y., Lin, H.-R., & Tang, B.-H. (2023). Combination of soy protein isolate and calcium chloride inhibits browning and maintains quality of fresh-cut peaches. Emirates Journal of Food and Agriculture. https://doi.org/10.9755/ejfa.2023.v35.i6.3118
51. Moreno, M. A., Vallejo, A. M., Ballester, A.-R., Zampini, C., Isla, M. I., López-Rubio, A., & Fabra, M. J. (2020). Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocolloids, 107, 105973. https://doi.org/10.1016/j.foodhyd.2020.105973
52. Babarabie, M., Sardoei, A. S., Jamali, B., & Hatami, M. (2024). Carnauba wax-based edible coatings retain quality enhancement of orange (Citrus sinensis cv. Moro) fruits during storage. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54556-1
53. Alkaabi, S., Sobti, B., Mudgil, P., Hasan, F., Ali, A., & Nazir, A. (2022). Lemongrass essential oil and aloe vera gel based antimicrobial coatings for date fruits. Applied Food Research, 2(1), 100127. https://doi.org/10.1016/j.afres.2022.100127
54. Wang, Q., Chen, W., Zhu, W., McClements, D. J., Liu, X., & Liu, F. (2022). A review of multilayer and composite films and coatings for active biodegradable packaging. Npj Science of Food, 6(1). https://doi.org/10.1038/s41538-022-00132-8
55. Amin, U., Khan, M. A., Akram, M. E., Al-Tawaha, A. R. M. S., Laishevtcev, A., & Shariati, M. A. (2019). Characterization of compisote edible films from aloe vera gel, beeswax and chitosan. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 854–862. https://doi.org/10.5219/1177
56. Mahato, R. P., Singh, P., & Srivastava, S. (2024). Prospects and Challenges of Nanofilms-based Edible Food Coatings for Enhancement of Their Shelf Life. In The Nanotechnology Driven Agriculture (pp. 204–224). CRC Press. https://doi.org/10.1201/9781003376446-12
57. Onyeaka, H., Passaretti, P., Miri, T., & Al-Sharify, Z. T. (2022). The safety of nanomaterials in food production and packaging. Current Research in Food Science, 5, 763–774. https://doi.org/10.1016/j.crfs.2022.04.005
58. Barage, S., Lakkakula, J., Sharma, A., Roy, A., Alghamdi, S., Almehmadi, M., Hossain, Md. J., Allahyani, M., & Abdulaziz, O. (2022). Nanomaterial in Food Packaging: A Comprehensive Review. Journal of Nanomaterials, 2022(1). https://doi.org/10.1155/2022/6053922
59. Muthu, A., Nguyen, D. H. H., Neji, C., Törős, G., Ferroudj, A., Atieh, R., Prokisch, J., El-Ramady, H., & Béni, Á. (2025). Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives. Foods, 14(15), 2657. https://doi.org/10.3390/foods14152657
60. Ghosh, S., Mandal, R. K., Mukherjee, A., & Roy, S. (2025). Nanotechnology in the manufacturing of sustainable food packaging: a review. Discover Nano, 20(1). https://doi.org/10.1186/s11671-025-04213-x
61. Peng, B., Qin, J., Li, Y., Wu, K., Kuang, Y., & Jiang, F. (2024). Recent advances in nanomaterials-enabled active food packaging: Nanomaterials synthesis, applications and future prospects. Food Control, 163, 110542. https://doi.org/10.1016/j.foodcont.2024.110542
62. Herrera-Rivera, M. del R., Torres-Arellanes, S. P., Cortés-Martínez, C. I., Navarro-Ibarra, D. C., Hernández-Sánchez, L., Solis-Pomar, F., Pérez-Tijerina, E., & Román-Doval, R. (2024). Nanotechnology in food packaging materials: role and application of nanoparticles. RSC Advances, 14(30), 21832–21858. https://doi.org/10.1039/d4ra03711a
63. Zhao, Z., Zhang, B., Huang, N., Sun, Y., Huai, X., Miao, J., Wang, S., Liu, W., Liu, Y., Chen, Z., Zhu, W., & Zhou, X. (2025). Types of nanomaterials commonly used in food packaging, film formation techniques, and recent advances in their applications. International Journal of Food Science and Technology, 60(1). https://doi.org/10.1093/ijfood/vvae036
64. Manojj, D., Yasasve, M., Hariharan, N. M., & Palanivel, R. (2021). Application of Edible Coatings and Packaging Materials for Preservation of Fruits-Vegetables. In Materials Forming, Machining and Tribology (pp. 59–79). Springer International Publishing. https://doi.org/10.1007/978-3-030-62163-6_3
65. Ungureanu, C., Tihan, G., Zgârian, R., & Pandelea (Voicu), G. (2023). Bio-Coatings for Preservation of Fresh Fruits and Vegetables. Coatings, 13(8), 1420. https://doi.org/10.3390/coatings13081420
66. Yousuf, B., & Qadri, O. S. (2020). Preservation of fresh-cut fruits and vegetables by edible coatings. In Fresh-Cut Fruits and Vegetables (pp. 225–242). Elsevier. https://doi.org/10.1016/b978-0-12-816184-5.00011-2
67. Mahamadou Elhadji Gounga, Rayanatou Issa Ado, Moussa Arohalassi Halidou, & Issoufou Amadou. (2023). Edible films and coatings for innovative use as food protective materials: Review and perspectives. International Journal of Science and Technology Research Archive, 4(1), 083–087. https://doi.org/10.53771/ijstra.2023.4.1.0171
68. kianfar, E., & Sayadi, H. (2022). Recent advances in properties and applications of nanoporous materials and porous carbons. Carbon Letters, 32(7), 1645–1669. https://doi.org/10.1007/s42823-022-00395-x
69. Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://doi.org/10.3390/foods12122422
70. Shao, L., Xi, Y., & Weng, Y. (2022). Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules, 27(18), 5953. https://doi.org/10.3390/molecules27185953
71. Ahmadzadeh, S., Hettiarachchy, N., Luthra, K., Chen, J., Seo, H.-S., Atungulu, G. G., & Ubeyitogullari, A. (2023). Effects of polyphenol-rich grape seed and green tea extracts on the physicochemical properties of 3D-printed edible soy protein films. Food Packaging and Shelf Life, 40, 101184. https://doi.org/10.1016/j.fpsl.2023.101184
72. Palaniyappan, S., Sivakumar, N. K., Bodaghi, M., Rahaman, M., & Pandiaraj, S. (2024). Preparation and performance evaluation of 3D printed Poly Lactic Acid composites reinforced with silane functionalized walnut shell for food packaging applications. Food Packaging and Shelf Life, 41, 101226. https://doi.org/10.1016/j.fpsl.2023.101226
73. Amin, U., Khan, M. K. I., Maan, A. A., Nazir, A., Riaz, S., Khan, M. U., Sultan, M., Munekata, P. E. S., & Lorenzo, J. M. (2022). Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packaging and Shelf Life, 33, 100903. https://doi.org/10.1016/j.fpsl.2022.100903
74. Ganeson, K., Mouriya, G. K., Bhubalan, K., Razifah, M. R., Jasmine, R., Sowmiya, S., Amirul, A.-A. A., Vigneswari, S., & Ramakrishna, S. (2023). Smart packaging − A pragmatic solution to approach sustainable food waste management. Food Packaging and Shelf Life, 36, 101044. https://doi.org/10.1016/j.fpsl.2023.101044
75. Tan, W., McClements, D. J., Chen, J., & Ma, D. (2024). Novel biopolymer-based active packaging material for food applications: Cinnamaldehyde-loaded calcium nanoparticles incorporated into alginate-carboxymethyl cellulose films. Food Packaging and Shelf Life, 45, 101351. https://doi.org/10.1016/j.fpsl.2024.101351
76. Baele, M., Vermeulen, A., Leloup, F. B., Adons, D., Peeters, R., Devlieghere, F., De Meulenaer, B., & Ragaert, P. (2020). Applicability of oxygen scavengers for shelf life extension during illuminated storage of cured cooked meat products packaged under modified atmosphere in materials with high and low oxygen permeability. Packaging Technology and Science, 34(3), 161–173. https://doi.org/10.1002/pts.2549
77. Rozo, D. F., Alvarado, J. F., Chaparro, L. M., Medina, J. A., & Salcedo, F. (2024). Modeling oxidation kinetics of linseed oil in oxygen scavenger nanocapsules to be potentially used in active food packaging. Food Packaging and Shelf Life, 42, 101256. https://doi.org/10.1016/j.fpsl.2024.101256
78. Soltani Firouz, M., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113. https://doi.org/10.1016/j.foodres.2021.110113
79. Deshmukh, R. K., Hakim, L., & Gaikwad, K. K. (2023). Active Packaging Materials. Current Food Science and Technology Reports, 1(2), 123–132. https://doi.org/10.1007/s43555-023-00004-6
80. Yan, M. R., Hsieh, S., & Ricacho, N. (2022). Innovative Food Packaging, Food Quality and Safety, and Consumer Perspectives. Processes, 10(4), 747. https://doi.org/10.3390/pr10040747
81. Melaku Tafese Awulachew (2022). A Review of Food Packaging Materials and Active Packaging System. International Journal of Health Policy Planning, 1(1). https://doi.org/10.33140/ijhpp.01.01.03
82. Subramaniyan, V., Anitha, D. P. M., Sellamuthu, P. S., & Emmanuel Rotimi, S. (2023). Probiotic incorporation into edible packaging: A recent trend in food packaging. Biocatalysis and Agricultural Biotechnology, 51, 102803. https://doi.org/10.1016/j.bcab.2023.102803
83. Subramaniyan, V., Sellamuthu, P. S., Sadiku, E. R., & Jarugala, J. (2024). Effect of flax seed mucilage and guar gum coating enriched with postbiotics on postharvest storage of fig fruits (Ficus carica L.). South African Journal of Botany, 166, 636–647. https://doi.org/10.1016/j.sajb.2024.01.071
84. A.G. Soares Silva, F., Carvalho, M., Bento de Carvalho, T., Gama, M., Poças, F., & Teixeira, P. (2023). Antimicrobial activity of in-situ bacterial nanocellulose-zinc oxide composites for food packaging. Food Packaging and Shelf Life, 40, 101201. https://doi.org/10.1016/j.fpsl.2023.101201
85. Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 24(22), 4132. https://doi.org/10.3390/molecules24224132
86. Mishra, B., Panda, J., Mishra, A. K., Nath, P. C., Nayak, P. K., Mahapatra, U., Sharma, M., Chopra, H., Mohanta, Y. K., & Sridhar, K. (2024). Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. International Journal of Biological Macromolecules, 279, 135583. https://doi.org/10.1016/j.ijbiomac.2024.135583
87. Zhang, W., Li, B., Lv, Y., Wei, S., Zhang, S., & Hu, Y. (2023). Synergistic effects of combined cinnamaldehyde and nonanal vapors against Aspergillus flavus. International Journal of Food Microbiology, 402, 110277. https://doi.org/10.1016/j.ijfoodmicro.2023.110277
88. Bhowmik, S., Agyei, D., & Ali, A. (2024). Smart chitosan films as intelligent food packaging: An approach to monitoring food freshness and biomarkers. Food Packaging and Shelf Life, 46, 101370. https://doi.org/10.1016/j.fpsl.2024.101370
89. Azeredo, H. M. C., & Correa, D. S. (2021). Smart choices: Mechanisms of intelligent food packaging. Current Research in Food Science, 4, 932–936. https://doi.org/10.1016/j.crfs.2021.11.016
90. Kumar, J., Akhila, K., & Gaikwad, K. K. (2021). Recent developments in intelligent packaging systems for food processing industry: a review. J Food ProcTechnol, 12, 895.
91. Kalpana, S., Priyadarshini, S. R., Maria Leena, M., Moses, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145–157. https://doi.org/10.1016/j.tifs.2019.09.008
92. Li, X., Liu, D., Pu, Y., & Zhong, Y. (2023). Recent Advance of Intelligent Packaging Aided by Artificial Intelligence for Monitoring Food Freshness. Foods, 12(15), 2976. https://doi.org/10.3390/foods12152976
93. Zuo, J., Feng, J., Gameiro, M. G., Tian, Y., Liang, J., Wang, Y., Ding, J., & He, Q. (2022). RFID-based sensing in smart packaging for food applications: A review. Future Foods, 6, 100198. https://doi.org/10.1016/j.fufo.2022.100198
94. Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods, 9(11), 1628. https://doi.org/10.3390/foods9111628
95. Hasanah, N. N., Mohamad Azman, E. M., Rozzamri, A., Zainal Abedin, N. H. Z., & Ismail-Fitry, M. R. (2023). A Systematic Review of Butterfly Pea Flower (Clitoria ternatea L.): Extraction and Application as a Food Freshness pH-Indicator for Polymer-Based Intelligent Packaging. Polymers, 15(11), 2541. https://doi.org/10.3390/polym15112541
96. Mirza Alizadeh, A., Masoomian, M., Shakooie, M., Zabihzadeh Khajavi, M., & Farhoodi, M. (2020). Trends and applications of intelligent packaging in dairy products: a review. Critical Reviews in Food Science and Nutrition, 62(2), 383–397. https://doi.org/10.1080/10408398.2020.1817847
97. Khodaei, S. M., Gholami‐Ahangaran, M., Karimi Sani, I., Esfandiari, Z., & Eghbaljoo, H. (2022). Application of intelligent packaging for meat products: A systematic review. Veterinary Medicine and Science, 9(1), 481–493. https://doi.org/10.1002/vms3.1017
98. Wu, D., Zhang, M., Chen, H., & Bhandari, B. (2020). Freshness monitoring technology of fish products in intelligent packaging. Critical Reviews in Food Science and Nutrition, 61(8), 1279–1292. https://doi.org/10.1080/10408398.2020.1757615
99. Babu, P. J. (2021). Nanotechnology mediated intelligent and improved food packaging. International Nano Letters, 12(1), 1–14. https://doi.org/10.1007/s40089-021-00348-8
100. Sobhan, A., Hossain, A., Wei, L., Muthukumarappan, K., & Ahmed, M. (2025). IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods, 14(8), 1403. https://doi.org/10.3390/foods14081403
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Dharshini Ramakrishnan, Darshini Alagammai Ramasamy, Vishnupriya Subramaniyan, Prathiba Subramanian, Suriyaprakash Rajadesingu (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles are published under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
This license permits non-commercial use, sharing, distribution, and reproduction of the work in any medium or format, provided that:
-
appropriate credit is given to the author(s) and the original publication in Scifood,
-
a link to the license is provided,
-
the work is not modified, adapted, or transformed.







