Development of a functional meat roll enriched with natural antioxidants from plant raw materials
DOI:
https://doi.org/10.5219/scifood.47Keywords:
meat, antioxidant, eggplant, barberry, sensory analysisAbstract
Incorporating plant-derived antioxidants into meat products aligns with the demand for clean-label, functional foods, offering a strategy to improve nutritional value and oxidative stability. However, optimized formulations that balance functionality and sensory acceptance remain underexplored. Methods: A controlled 3×3 factorial experiment was conducted to evaluate the impact of eggplant peel (5%, 10%, 15%) and barberry powder (1, 3, 5 g/100 g meat) on antioxidant activity, vitamin B (B1+B2) content, microbiological safety, and sensory properties of meat rolls. Analytical methods included Folin–Ciocalteu spectrophotometry (ISO 14502-1), HPLC (ISO 20633:2015), total viable count assessment (ISO 4833-1), and sensory evaluation using a trained panel and 5-point hedonic scale. The highest antioxidant activity (0.130 ± 0.003 mg gallic acid equivalents/g) was achieved at 10% eggplant peel and 3 g barberry powder. Vitamin B content increased from 0.060 ± 0.001 mg/100 g at 1 g barberry to 0.100 ± 0.002 mg/100 g at 5 g barberry. Sensory scores ranged from 2.97 ± 0.15 to 4.2 ± 0.1, peaking at 15% eggplant and 3 g barberry. Microbiological counts remained below the hygienic limit of 5 log CFU/g in all samples, indicating compliance with safety standards. The combination of 10–15% eggplant peel and 3 g barberry powder effectively enhanced antioxidant capacity and sensory appeal while maintaining microbiological safety, confirming the research hypothesis. These findings support the development of functional, plant-enriched meat products with improved nutritional and organoleptic qualities, meeting clean-label requirements and offering commercial potential. Limitations include the absence of extended shelf-life assessment and large-scale consumer studies.
References
1. Bhardwaj, K., Najda, A., Sharma, R., Nurzyńska-Wierdak, R., Dhanjal, D. S., Sharma, R., Manickam, S., Kabra, A., Kuča, K., & Bhardwaj, P. (2022). Fruit and Vegetable Peel-Enriched Functional Foods: Potential Avenues and Health Perspectives. Evidence-Based Complementary and Alternative Medicine, 2022, 1–14. https://doi.org/10.1155/2022/8543881
2. Ferysiuk, K., & Wójciak, K. M. (2020). Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants, 9(8), 711. https://doi.org/10.3390/antiox9080711
3. Kobo, G. K., Kaseke, T., & Fawole, O. A. (2022). Micro-Encapsulation of Phytochemicals in Passion Fruit Peel Waste Generated on an Organic Farm: Effect of Carriers on the Quality of Encapsulated Powders and Potential for Value-Addition. Antioxidants, 11(8), 1579. https://doi.org/10.3390/antiox11081579
4. Molina, A. K., Corrêa, R. C. G., Prieto, M. A., Pereira, C., & Barros, L. (2023). Bioactive Natural Pigments’ Extraction, Isolation, and Stability in Food Applications. Molecules, 28(3), 1200. https://doi.org/10.3390/molecules28031200
5. Dong, Q., Han, D., Li, B., Yang, Y., Ren, L., Xiao, T., Zhang, J., Li, Z., Yang, H., & Liu, H. (2023). Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. International Journal of Biological Macromolecules, 240, 124342. https://doi.org/10.1016/j.ijbiomac.2023.124342
6. Sani, M. A., Tavassoli, M., Hamishehkar, H., & McClements, D. J. (2021). Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydrate Polymers, 255, 117488. https://doi.org/10.1016/j.carbpol.2020.117488
7. Khezri, S., Ghanbarzadeh, B., & Ehsani, A. (2025). Barberry anthocyanins: recent advances in extraction, stability, biological activities, and utilisation in food systems—a review. International Journal of Food Science and Technology, 60(1). https://doi.org/10.1093/ijfood/vvaf031
8. Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., & Rhim, J.-W. (2021). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules, 166, 741–750. https://doi.org/10.1016/j.ijbiomac.2020.10.231
9. Moradinezhad, F., Dorostkar, M., Niazmand, R., & Doraki, G. (2024). A comprehensive study of qualitative and biochemical characteristics of dried seedless barberry fruits from different regions of South Khorasan Province Iran. Journal of Horticulture and Postharvest Research, Online First. https://doi.org/10.22077/jhpr.2024.7912.1399
10. Polak, N., Kalisz, S., & Kruszewski, B. (2024). High-Temperature Short-Time and Ultra-High-Temperature Processing of Juices, Nectars and Beverages: Influences on Enzyme, Microbial Inactivation and Retention of Bioactive Compounds. Applied Sciences, 14(19), 8978. https://doi.org/10.3390/app14198978
11. García-Parra, J., González-Cebrino, F., Cava, R., & Ramírez, R. (2014). Effect of a different high pressure thermal processing compared to a traditional thermal treatment on a red flesh and peel plum purée. Innovative Food Science & Emerging Technologies, 26, 26–33. https://doi.org/10.1016/j.ifset.2014.08.002
12. Bajić, A., Pezo, L., Mastilović, J., Mišan, A., Cvetković, B., Kovač, R., Stupar, A., Ubiparip Samek, D., & Djordjević, M. (2024). Phenolic compounds’ stability in reduced-calorie plum spread fortified with freeze-dried plum pomace: Effects of processing techniques and pasteurization. Food and Bioproducts Processing, 148, 547–558. https://doi.org/10.1016/j.fbp.2024.10.016
13. Ionescu, A.-D., Ferdeș, M., Voicu, G., Ipate, G., Constantin, G.-A., Ștefan, E.-M., & Begea, M. (2024). Effect of Grinding and Successive Sieving on the Distribution of Active Biological Compounds in the Obtained Fractions of Blackthorn Berries. Applied Sciences, 14(16), 7133. https://doi.org/10.3390/app14167133
14. Huang, Y., Zhang, J., Tian, Y., Kong, Y., Liu, Y., Luo, P., & Zhang, Z. (2024). Influence of different drying methods on the browning, phytochemical components and antioxidant capacity of Choerospondias axillaris fruits. LWT, 205, 116511. https://doi.org/10.1016/j.lwt.2024.116511
15. Nguyen, T. N., Tran, T. T. T., & Le, V. V. M. (2025). Effects of Blanching Conditions on the Enzyme Inhibition and Antioxidant Loss in Rambutan (Nephelium lappaceum L.) Seeds. Polish Journal of Food and Nutrition Sciences, 49–59. https://doi.org/10.31883/pjfns/200589
16. Lv, X., Lan, T., Wang, S., Li, X., Bao, S., Li, T., Sun, X., & Ma, T. (2024). Comparative study on the physicochemical properties, functional components, color and anthocyanins profile of Aronia melanocarpa; juice using different sterilization methods. Food Innovation and Advances, 3(2), 64–74. https://doi.org/10.48130/fia-0024-0008
17. Srivastava, P. K., & Sit, N. (2024). Mathematical and ANN Modelling for Convective Drying of Spanish Cherry Seeds: Bioactive Degr
18. adation, Energy Efficiency, and Mass Transfer Evaluation. Food Biophysics, 20(1). https://doi.org/10.1007/s11483-024-09898-8
19. Tsegay, Z. T., Gebreegziabher, S. T.-B., & Mulaw, G. (2024). Nutritional Qualities and Valorization Trends of Vegetable and Fruit Byproducts: A Comprehensive Review. Journal of Food Quality, 2024(1). https://doi.org/10.1155/2024/5518577
20. Keyata, E. O., Tola, Y. B., Bultosa, G., & Forsido, S. F. (2023). Bioactive compounds, antioxidant capacity, functional and sensory properties of optimized complementary weaning flour processed from sorghum, soybean, and karkade (Hibiscus sabdariffa L.) seeds. Scientific African, 19, e01457. https://doi.org/10.1016/j.sciaf.2022.e01457
21. Mirzabe, A. H., Hajiahmad, A., & Asadollahzadeh, A. H. (2021). Extracting barberry juice: Mathematical models describing loading stage, stress‐relaxation behavior, and momentary juice mass. Journal of Food Process Engineering, 44(9). https://doi.org/10.1111/jfpe.13781
22. Zhang, Q., Zhang, J., Zhang, J., Xu, D., Li, Y., Liu, Y., Zhang, X., Zhang, R., Wu, Z., & Weng, P. (2021). Antimicrobial Effect of Tea Polyphenols against Foodborne Pathogens: A Review. Journal of Food Protection, 84(10), 1801–1808. https://doi.org/10.4315/jfp-21-043
23. Manso, T., Lores, M., & de Miguel, T. (2021). Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics, 11(1), 46. https://doi.org/10.3390/antibiotics11010046
24. Fong-in, S., Wicharaew, K., Phalapan, P., & Prommajak, T. (2023). Extraction and enzymatic modification of dietary fibre from purple aubergine. Czech Journal of Food Sciences, 41(4), 304–312. https://doi.org/10.17221/84/2023-cjfs
25. Liu, C., Bai, C., Zhang, Y., Zhu, H., Dong, Z., & Zheng, X. (2025). Combined effect of ultrasonic pretreatment and drying temperature on the quality characteristics of honeysucks puree under microwave vacuum drying. Drying Technology, 1–15. https://doi.org/10.1080/07373937.2025.2492778
26. Liu, Z.-L., Wang, S.-Y., Huang, X.-J., Zhang, X.-H., Xie, L., Bai, J.-W., Zheng, Z.-A., & Xiao, H.-W. (2025). Quality changes and shelf-life prediction of far-infrared radiation heating assisted pulsed vacuum dried blueberries by SSA-ELM. Food Chemistry, 473, 143060. https://doi.org/10.1016/j.foodchem.2025.143060
27. Ling, J. K. U., Sam, J. H., Jeevanandam, J., Chan, Y. S., & Nandong, J. (2022). Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. Food and Bioprocess Technology, 15(9), 1919–1935. https://doi.org/10.1007/s11947-022-02797-1
28. Imtiaz, F., Ahmed, D., Mohammed, O. A., Younas, U., & Iqbal, M. (2025). Optimized recovery of phenolic and flavonoid compounds from medicinal plant extracts for enhanced antioxidant activity: A mixture design approach. Results in Chemistry, 13, 101960. https://doi.org/10.1016/j.rechem.2024.101960
29. Mari, A., Manta, E., & Krokida, M. (2025). Innovative Microalgae-Based Edible Coatings with Encapsulated Bioactives: Enhancing Fresh Raspberry Shelf Life and Quality. Processes, 13(4), 1193. https://doi.org/10.3390/pr13041193
30. Efenberger-Szmechtyk, M., Nowak, A., & Czyzowska, A. (2020). Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1), 149–178. https://doi.org/10.1080/10408398.2020.1722060
31. Oulahal, N., & Degraeve, P. (2022). Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.753518
32. Nuntalit, P., & Bunmee, T. (2020). Utilization of purple eggplant flour in low fat beef patties (Doctoral dissertation, University of Phayao). Retrieved from: https://www.cabidigitallibrary.org/doi/full/10.5555/20219912991
33. Lazăr, N.-N., Râpeanu, G., & Iticescu, C. (2024). Mitigating eggplant processing waste’s environmental impact through functional food developing. Trends in Food Science & Technology, 147, 104414. https://doi.org/10.1016/j.tifs.2024.104414
34. Blumenthal-Rodriguez, J., Amaya-Guerra, C. A., Quintero-Ramos, A., Castillo-Hernández, S. L., Bautista-Villarreal, M., Báez-González, J. G., Elizondo-Luevano, J. H., & Torres-Alvarez, C. (2025). Eggplant Flour as a Functional Ingredient in Frankfurt-Type Sausages: Design, Preparation and Evaluation. Foods, 14(4), 624. https://doi.org/10.3390/foods14040624
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gulnara Shambulova, Dinara Tlevlessova, Zeinep Nurseitova, Gulbagi Orymbetova , Elmira Kanseitova, Gaukhar Kuzembayeva , Zhanat Iskakova (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.







