Radiological safety of animal products

Authors

  • Aida Abzhaliyeva Kazakh national agrarian research university, Faculty of Veterinary and Zooengineering, Department of "Veterinary Sanitary ", Abay str, 8, 050010, Almaty, Kazakhstan, Tel.: +7778 409 94 7 Author https://orcid.org/0000-0002-5462-8261
  • Togzhan Boranbayeva Kazakh national agrarian research university, Faculty of Engineering and Technology, Department of "Technology of Food Production and Food Safety", Abay str, 8, 050010, Almaty, Kazakhstan, Tel.: +7702 169 7035 Author https://orcid.org/0000-0002-1159-1200
  • Akzharkyn Uzyntleuova Kazakh national agrarian research university, Faculty of Veterinary and Zooengineering, Department of "Veterinary Sanitary ", Abay str, 8, 050010, Almaty, Kazakhstan, Tel.: +7775 757 29 57 Author https://orcid.org/0000-0001-8372-8707
  • Azhar Zarkhanova Kazakh national agrarian research university, Faculty of Veterinary and Zooengineering, Department of "Veterinary Sanitary ", Abay str, 8, 050010, Almaty, Kazakhstan, Tel.: +7708 701 56 68 Author https://orcid.org/0000-0003-3291-3122
  • Symbat Junisbayeva Kazakh national agrarian research university, Faculty of Veterinary and Zooengineering, Department of "Veterinary Sanitary ", Abay str, 8, 050010, Almaty, Kazakhstan, Tel.: +7707 967 58 40 Author https://orcid.org/0000-0003-0039-3089

DOI:

https://doi.org/10.5219/scifood.19

Keywords:

food safety, radioactive contamination, animals, radionuclide, veterinary sanitation

Abstract

The presence of radionuclides such as caesium-137 and strontium-90 in the food chain remains a critical environmental and public health concern, particularly when humans ingest these substances. Kazakhstan, with its history of nuclear testing, particularly at the Semipalatinsk Test Site, has experienced significant residual contamination from past nuclear explosions. This legacy continues to contribute to the presence of caesium-137 and strontium-90 in the environment, posing potential risks to ecology and human health. The study, conducted in Kazakhstan and involving sampling of soil, plants, water and animal products, is a key step towards understanding the extent of radionuclide contamination in the region. One of the novel aspects of this study is its holistic approach, which goes beyond the traditional focus on direct food contamination. The study uniquely examines the environmental pathways that facilitate the transfer of radionuclides from soil and plants to animals, thereby providing a deeper understanding of how contamination can spread through the food chain. This multi-level analysis integrates different environmental matrices, making it one of the first to examine the interconnected dynamics of radionuclide migration through soil, plants, water, and animal products in Kazakhstan. A particularly encouraging finding of this study was the lack of excess activity in milk and meat samples, suggesting that contamination in these specific regions may be within acceptable limits. However, the study's novelty lies not only in its results, but also in its emphasis on the importance of ongoing monitoring. Despite the lack of immediate health threats from these specific samples, the study highlights the need for ongoing surveillance to ensure that radionuclide levels remain within safe limits.

Metrics

Metrics Loading ...

References

1. Caridi, F., Venuti, V., Paladini, G., Belmusto, G., Crupi, V., & Majolino, D. (2023). Assessment of Radioactivity Concentration in Milk Samples Consumed in Italy. In Current Nutrition & Food Science (Vol. 19, Issue 2, pp. 176–181). Bentham Science Publishers Ltd. https://doi.org/10.2174/1573401318666220415090712

2. Jia, G., & Magro, L. (2021). Transfer behaviors of 90Sr and 137Cs from soil to grass to cow milk under natural conditions in Central Italy and their exposure risk. In Journal of Radioanalytical and Nuclear Chemistry (Vol. 330, Issue 3, pp. 845–856). Springer Science and Business Media LLC. https://doi.org/10.1007/s10967-021-07977-5

3. Ong, J. X., Gan, P., Lee, K. K. M., Wu, Y., & Chan, J. S. H. (2024). An assessment of natural and artifical radionuclide content in powdered milk consumed by infants and toddlers in Singapore. In Journal of Radioanalytical and Nuclear Chemistry (Vol. 333, Issue 2, pp. 951–959). Springer Science and Business Media LLC. https://doi.org/10.1007/s10967-023-09331-3

4. Sotiropoulou, M., & Florou, H. (2021). Measurement and calculation of radionuclide concentration ratios from soil to grass in semi-natural terrestrial habitats in Greece. In Journal of Environmental Radioactivity (Vol. 237, p. 106666). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2021.106666

5. Chen, C.-Y. (2023). Assessing the impact of climatic factors on biosphere dose conversion factors in long-term safety assessment of radioactive waste disposal. In Journal of Environmental Radioactivity (Vol. 270, p. 107302). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2023.107302

6. Rosnovskaya, N. A., Kryshev, I. I., Kryshev, A. I., & Katkova, M. N. (2023). Quality indicators of the marine environment by the level of radionuclide activity for the kara sea ecosystem. In Meteorologiya i Gidrologiya (Issue 4, pp. 91–98). FSBI SRC Planeta. https://doi.org/10.52002/0130-2906-2023-4-91-98

7. Puchkov, A., Druzhinina, A., Yakovlev, E., & Druzhinin, S. (2023). Assessing the Natural and Anthropogenic Radionuclide Activities in Fish from Arctic Rivers Northwestern Russia). Pollution, 9(3). https://doi.org/10.22059/poll.2023.350148.1668

8. Sánchez-Rodríguez, H. L., Contreras-Correa, Z. E., Lemley, C. O., Domenech-Pérez, K., & Muñiz-Colón, G. (2023). 87 Milk Yield, Vaginal Temperature, and Solar Radiation Exposure in Slick and Wild Type-Haired Puerto Rican Holstein Cows. In Journal of Animal Science (Vol. 101, Issue Supplement_1, pp. 64–65). Oxford University Press (OUP). https://doi.org/10.1093/jas/skad068.076

9. Kryshev, A. I., Sazykina, T. G., Katkova, M. N., Kryshev, I. I., Buryakova, A. A., & Pavlova, N. N. (2023). Assessment of Ecological Risk to Biota of Stepovoi Bay of the Kara Sea after Hypothetical Accidental Contamination. In Biology Bulletin (Vol. 50, Issue 11, pp. 3087–3095). Pleiades Publishing Ltd. https://doi.org/10.1134/s1062359023110110

10. Bilgici Cengiz, G. (2020). Determination of natural radioactivity in products of animals fed with grass: A case study for Kars Region, Turkey. In Scientific Reports (Vol. 10, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-020-63845-4

11. Stäger, F., Zok, D., Schiller, A.-K., Feng, B., & Steinhauser, G. (2023). Disproportionately High Contributions of 60 Year Old Weapons-137Cs Explain the Persistence of Radioactive Contamination in Bavarian Wild Boars. In Environmental Science & Technology (Vol. 57, Issue 36, pp. 13601–13611). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.3c03565

12. Rozemeijer, J. C., & Broers, H. P. (2007). The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). In Environmental Pollution (Vol. 148, Issue 3, pp. 695–706). Elsevier BV. https://doi.org/10.1016/j.envpol.2007.01.028

13. Negishi, J. N., Sakai, M., Okada, K., Iwamoto, A., Gomi, T., Miura, K., Nunokawa, M., & Ohhira, M. (2017). Cesium-137 contamination of river food webs in a gradient of initial fallout deposition in Fukushima, Japan. In Landscape and Ecological Engineering (Vol. 14, Issue 1, pp. 55–66). Springer Science and Business Media LLC. https://doi.org/10.1007/s11355-017-0328-8

14. Editorial Board and Table of Contents. (2020). In Environmental Toxicology and Chemistry (Vol. 39, Issue 7, pp. 1293–1296). Oxford University Press (OUP). https://doi.org/10.1002/etc.4489

15. Sahoo, S. K., Kavasi, N., Sorimachi, A., Arae, H., Tokonami, S., Mietelski, J. W., Łokas, E., & Yoshida, S. (2016). Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. In Scientific Reports (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/srep23925

16. Howard, B. J., Beresford, N. A., Barnett, C. L., & Fesenko, S. (2009). Quantifying the transfer of radionuclides to food products from domestic farm animals. In Journal of Environmental Radioactivity (Vol. 100, Issue 9, pp. 767–773). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2009.03.010

17. Khalturin, V. I., Rautian, T. G., Richards, P. G., & Leith, W. S. (2005). A Review of Nuclear Testing by the Soviet Union at Novaya Zemlya, 1955–1990. In Science & Global Security (Vol. 13, Issues 1–2, pp. 1–42). Informa UK Limited. https://doi.org/10.1080/08929880590961862

18. Tagami, K., Fukaya, Y., Hirayama, M., & Uchida, S. (2021). Collation of Strontium Concentration Ratios from Water to Aquatic Biota Species in Freshwater and Marine Environments and Factors Affecting the Ratios. In Environmental Science & Technology (Vol. 55, Issue 3, pp. 1637–1649). American Chemical Society (ACS). https://doi.org/10.1021/acs.est.0c05710

19. Sanzharova, N. I., Geshel, I. V., Krylenkin, D. V., & Gordienko, E. V. (2020). Current Status of Studies of 90Sr Behavior in the Soil–Agricultural Plant System (Overview). In Biology Bulletin (Vol. 47, Issue 11, pp. 1564–1575). Pleiades Publishing Ltd. https://doi.org/10.1134/s1062359020110126

20. de Rulg, W. G., & van der Struijs, T. D. B. (1992). Radioactive contamination of food sampled in the areas of the USSR affected by the chernobyl disaster. In The Analyst (Vol. 117, Issue 3, p. 545). Royal Society of Chemistry (RSC). https://doi.org/10.1039/an9921700545

21. Dahlgaard, H., Eriksson, M., Nielsen, S., & Joensen, H. (2004). Levels and trends of radioactive contaminants in the Greenland environment. In Science of The Total Environment (Vol. 331, Issues 1–3, pp. 53–67). Elsevier BV. https://doi.org/10.1016/j.scitotenv.2004.03.023

22. Zhu, J., Chen, K., Xie, T., Li, T., Wang, T., Zhang, A., Chen, C., & Zhang, Q. (2024). Laboratory experiments and modeling of the transport of 90Sr, 137Cs, 238U, 238Pu in fractures under high flow velocity. In Journal of Environmental Radioactivity (Vol. 280, p. 107572). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2024.107572

23. Gaschak, S. P., Makliuk, Y. A., Maksimenko, A. M., Bondarkov, M. D., Chizhevsky, I., Caldwell, E. F., Jannik, G. T., & Farfán, E. B. (2011). Frequency distributions of 90Sr and 137Cs concentrations in an ecosystem of the “red forest” area in the chernobyl exclusion zone. In Health Physics (Vol. 101, Issue 4, pp. 409–415). Ovid Technologies (Wolters Kluwer Health). https://doi.org/10.1097/hp.0b013e31821d0b81

24. Yamaguchi, N., Taniyama, I., Kimura, T., Yoshioka, K., & Saito, M. (2016). Contamination of agricultural products and soils with radiocesium derived from the accident at TEPCO Fukushima Daiichi Nuclear Power Station: monitoring, case studies and countermeasures. In Soil Science and Plant Nutrition (Vol. 62, Issue 3, pp. 303–314). Informa UK Limited. https://doi.org/10.1080/00380768.2016.1196119

25. Izrael Yu.A., Kvasnikova, E. V., & Linnik, V. G. (2012). Radioactive contamination in Russia (in Russia). Unpublished. https://doi.org/10.13140/2.1.1390.1445

26. Mihalik, J., Chelaifa, H., Alzaabi, M., & Alkaabi, A. K. (2024). Challenges in radioecology following the new trends in UAE’s agriculture and environmental changes: a review. In Environmental Science and Pollution Research (Vol. 31, Issue 49, pp. 58779–58794). Springer Science and Business Media LLC. https://doi.org/10.1007/s11356-024-35139-z

27. Mesrar, H., Sadiki, A., Faleh, A., Quijano, L., Gaspar, L., & Navas, A. (2017). Vertical and lateral distribution of fallout 137 Cs and soil properties along representative toposequences of central Rif, Morocco. In Journal of Environmental Radioactivity (Vols. 169–170, pp. 27–39). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2016.12.012

28. Al Attar, L., Al-Oudat, M., Safia, B., & Ghani, B. A. (2015). Transfer factor of 90 Sr and 137 Cs to lettuce and winter wheat at different growth stage applications. In Journal of Environmental Radioactivity (Vol. 150, pp. 104–110). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2015.08.009

29. Al-Oudat, M., Al Attar, L., & Othman, I. (2021). Transfer factor of 137Cs and 90Sr to various crops in semi-arid environment. In Journal of Environmental Radioactivity (Vol. 228, p. 106525). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2020.106525

30. Al Attar, L., Al-Oudat, M., Safia, B., & Abdul Ghani, B. (2016). Ageing impact on the transfer factor of 137Cs and 90Sr to lettuce and winter wheat. In Journal of Environmental Radioactivity (Vol. 164, pp. 19–25). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2016.06.019

31. Smith, J. T., Beresford, N. A., George Shaw, G., & Moberg, L. (n.d.). Radioactivity in terrestrial ecosystems. In Springer Praxis Books (pp. 81–137). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-28079-0_3

32. G.V., L., V.R., Z., O.A., M., & B.I., S. (2018). Influence of Radioactive Contamination of the Sr-90 Terrestrial Ecosystems on the Enzymatic Activity of the Soil. In KnE Engineering (Vol. 3, Issue 3, p. 137). Knowledge E DMCC. https://doi.org/10.18502/keg.v3i3.1613

33. Olagbaju, P. O., Wojuola, O. B., & Tshivhase, V. (2021). Radionuclides Contamination in Soil: Effects, Sources and Spatial Distribution. In A. Lyoussi, M. Carette, R. Hodák, I. Jenčič, P. Le Dû, S. Pospíšil, C. Reynard-Carette, L. Snoj, I. Stekl, & L. Vermeeren (Eds.), EPJ Web of Conferences (Vol. 253, p. 09006). EDP Sciences. https://doi.org/10.1051/epjconf/202125309006

34. Adlienė, D., Rääf, C., Magnusson, Å., Behring, J., Zakaria, M., Adlys, G., Skog, G., Stenström, K., & Mattsson, S. (2006). Assessment of the environmental contamination with long-lived radionuclides around an operating RBMK reactor station. In Journal of Environmental Radioactivity (Vol. 90, Issue 1, pp. 68–77). Elsevier BV. https://doi.org/10.1016/j.jenvrad.2006.06.004

35. Dozol, M., & Hagemann, R. (1993). Radionuclide migration in groundwaters: Review of the behaviour of actinides (Technical Report). In Pure and Applied Chemistry (Vol. 65, Issue 5, pp. 1081–1102). Walter de Gruyter GmbH. https://doi.org/10.1351/pac199365051081

Downloads

Published

2025-04-11

Issue

Section

Articles

How to Cite

Radiological safety of animal products. (2025). Scifood, 19(1), 224-236. https://doi.org/10.5219/scifood.19