Development and evaluation of technology for preserving hard cheese with staphylococcal bacteriophage

Authors

  • Mykola Kukhtyn Ternopil Ivan Pului National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ruska, 56, 46001, Ternopil, Ukraine, Tel.: +380972392057 Author https://orcid.org/0000-0002-0195-0767
  • Ivan Kremenchuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380982633949 Author https://orcid.org/0009-0006-6213-4196
  • Yuliia Horiuk Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380976617964 Author https://orcid.org/0000-0002-7162-8992
  • Volodymyr Salata Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, Faculty of Veterinary Medicine, Department of Veterinary-Sanitary Inspection, Pekarska, 50, 79010, Lviv, Ukraine, Tel.: +380677288933 Author https://orcid.org/0000-0002-7175-493X
  • Halyna Kochetova State Scientific and Research Institute for Laboratory Diagnostics and Veterinary and Sanitary Expertise, Donetska, 30, 03151, Kyiv, Ukraine, Tel.: +380975672869 Author https://orcid.org/0000-0003-3234-1355
  • Larysa Kladnytska National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary medicine, Department of Physiology of Vertebrates and Pharmacology, Vystavkova Str., 16, building N.12, Kyiv, 03127, Ukraine, Tel.: +380631866233 Author https://orcid.org/0000-0002-9360-0587
  • Vladyslav Kozhyn Podillia State University, Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Internal Pathology and Surgery, Schevchenko, 12, 32301, Kamianets-Podilskyi, Ukraine, Tel.: +380962244934 Author https://orcid.org/0000-0002-2377-3589
  • Taras Matviishyn Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, Faculty of Veterinary Medicine, Department of Epizootology, Pekarska, 50, 79010, Lviv, Ukraine, Tel.: +380 672776303 Author https://orcid.org/0000-0001-5226-7282

DOI:

https://doi.org/10.5219/scifood.16

Keywords:

staphylococcal bacteriophages, phage control, rennet cheeses, cheese technology

Abstract

Despite the control of dairy products by microbiological indicators, this category of products is among those that most often cause alimentary infections and poisonings among consumers. At the same time, the most dangerous food pathogens are Campylobacter, Salmonella, Listeria monocytogenes and toxin-producing pathogens ‒ Staphylococcus aureus. Therefore, the issue of increasing the microbiological safety of dairy products, including hard cheese, is constantly relevant. This search aimed to determine S. aureus contamination of raw milk and hard cheeses and assess the influence of isolated bacteriophages on the development of staphylococci and lactic acid microorganisms during cheese ripening. S. aureus was not detected in 25.5% of raw milk samples received for processing. In comparison, the bulk of the milk – 52.9% of the samples – was contaminated with coagulase-positive staphylococci up to 500 CFU/ml. 21.6% of raw milk samples at the processing plant contained S. aureus more than 500 CFU/ml. Hard cheeses sold in the trade network did not contain S.aureus in 70.4% of samples; in 22.2%, its amount did not exceed 5 ×102 CFU/g, and in 7.4% of cheese samples, the content of S.aureus was higher than the standard norm of 5 ×102 CFU/g. From 30.4 to 60.8% of raw milk samples contained virulent phages that lysed S. aureus, which was isolated from hard cheeses and dairy raw materials. Two phages (No. 4 and No. 8) were isolated from raw milk, which showed 80.0 – 90.0% virulent activity in four crosses against both S. aureus isolated from milk and rennet cheeses. These phages were introduced into the technology of hard cheese production. The addition of virulent staphylococcal bacteriophages to the milk mixture (2 ml per 1 l at a concentration of 108 CFU/ml) during the production technology of hard cheese allows its preservation against the development of S. aureus. Thus, a technology for the biocontrol of S. aureus in hard cheese has been developed, almost wholly neutralizing it during production.

Metrics

Metrics Loading ...

References

1. Tomczyńska-Mleko, M., Sołowiej, B. G., Terpiłowski, K., Wesołowska-Trojanowska, M., & Mleko, S. (2025). Novel high-protein dairy product based on fresh white cheese and whey protein isolate. In Journal of Dairy Science (Vol. 108, Issue 1, pp. 272–281). American Dairy Science Association. https://doi.org/10.3168/jds.2024-25263

2. Yukalo, V., Krupa, O., Datsyshyn, K., & Storozh, L. (2023). Proteolytic activity of the Carpathian traditional liquid milk coagulant. In Ukrainian Food Journal (Vol. 12, Issue 2, pp. 240–251). National University of Food Technologies. https://doi.org/10.24263/2304-974x-2023-12-2-7

3. Zheng, X., Shi, X., & Wang, B. (2021). A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese. In Frontiers in Microbiology (Vol. 12). Frontiers Media SA. https://doi.org/10.3389/fmicb.2021.703284

4. Zhao, Z., Ning, C., Chen, L., Zhao, Y., Yang, G., Wang, C., Chen, N., Zhang, Z., & Li, S. (2021). Impacts of manufacture processes and geographical regions on the microbial profile of traditional Chinese cheeses. In Food Research International (Vol. 148, p. 110600). Elsevier BV. https://doi.org/10.1016/j.foodres.2021.110600

5. Korena, K., Krzyzankova, M., Florianova, M., Karasova, D., Babak, V., Strakova, N., & Juricova, H. (2023). Microbial Succession in the Cheese Ripening Process—Competition of the Starter Cultures and the Microbiota of the Cheese Plant Environment. In Microorganisms (Vol. 11, Issue 7, p. 1735). MDPI AG. https://doi.org/10.3390/microorganisms11071735

6. Arutiunian, D., & Kukhtyn, M. (2023). Microbiological indicators of quality and safety of hard rennet cheese with linseed content during storage. In Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies (Vol. 25, Issue 100, pp. 3–8). Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv. https://doi.org/10.32718/nvlvet-f10001

7. Yukalo, V., Krupa, O., & Storozh, L. (2019). Characteristics of proteolytic processes during the isolation of natural casein phosphopeptides. In Ukrainian Food Journal (Vol. 8, Issue 1, pp. 61–69). National University of Food Technologies. https://doi.org/10.24263/2304-974x-2019-8-1-7

8. Nájera, A. I., Nieto, S., Barron, L. J. R., & Albisu, M. (2021). A Review of the Preservation of Hard and Semi-Hard Cheeses: Quality and Safety. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 18, p. 9789). MDPI AG. https://doi.org/10.3390/ijerph18189789

9. Vacca, M., Celano, G., Serale, N., Costantino, G., Calabrese, F. M., Calasso, M., & De Angelis, M. (2024). Dynamic microbial and metabolic changes during Apulian Caciocavallo cheesemaking and ripening produced according to a standardized protocol. In Journal of Dairy Science (Vol. 107, Issue 9, pp. 6541–6557). American Dairy Science Association. https://doi.org/10.3168/jds.2023-24049

10. DSTU 6003:2008, 2013. Cheese hard. General specification. National Standard of Ukraine

11. Ljevaković-Musladin, I., Kozačinski, L., Krilanović, M., Vodnica Martucci, M., Lakić, M., Grispoldi, L., & Cenci-Goga, B. T. (2023). Enterotoxigenic and Antimicrobic Susceptibility Profile of Staphylococcus aureus Isolates from Fresh Cheese in Croatia. In Microorganisms (Vol. 11, Issue 12, p. 2993). MDPI AG. https://doi.org/10.3390/microorganisms11122993

12. Titouche, Y., Houali, K., Ruiz‐Ripa, L., Vingadassalon, N., NIA, Y., Fatihi, A., Cauquil, A., Bouchez, P., Bouhier, L., Torres, C., & Hennekinne, J. A. (2020). Enterotoxin genes and antimicrobial resistance in Staphylococcus aureus isolated from food products in Algeria. In Journal of Applied Microbiology (Vol. 129, Issue 4, pp. 1043–1052). Oxford University Press (OUP). https://doi.org/10.1111/jam.14665

13. Oliveira, R., Pinho, E., Almeida, G., Azevedo, N. F., & Almeida, C. (2022). Prevalence and Diversity of Staphylococcus aureus and Staphylococcal Enterotoxins in Raw Milk From Northern Portugal. In Frontiers in Microbiology (Vol. 13). Frontiers Media SA. https://doi.org/10.3389/fmicb.2022.846653

14. European Food Safety Authority & European Centre for Disease Prevention and Control. (2021). The European Union One Health 2019 Zoonoses Report [JB]. EFSA Journal, 19(2). https://doi.org/10.2903/j.efsa.2021.6406

15. Interagency Food Safety Analytics Collaboration (IFSAC), Foodborne illness source attribution estimates for 2019 for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter using multi-year outbreak surveillance data, United States, 2019. Retriewed from: https://www.cdc.gov/foodsafety/ifsac/projects/index.html

16. Pires, S. M., Desta, B. N., Mughini-Gras, L., Mmbaga, B. T., Fayemi, O. E., Salvador, E. M., Gobena, T., Majowicz, S. E., Hald, T., Hoejskov, P. S., Minato, Y., & Devleesschauwer, B. (2021). Burden of foodborne diseases: think global, act local. In Current Opinion in Food Science (Vol. 39, pp. 152–159). Elsevier BV. https://doi.org/10.1016/j.cofs.2021.01.006

17. Sakaridis, I., Psomas, E., Karatzia, M.-A., & Samouris, G. (2022). Hygiene and Safety of Hard Cheese Made from Raw Cows’ Milk. In Veterinary Sciences (Vol. 9, Issue 10, p. 569). MDPI AG. https://doi.org/10.3390/vetsci9100569

18. Kukhtyn, M., Malimon, Z., Salata, V., Rogalskyy, I., Gutyj, B., Kladnytska, L., Kravcheniuk, K., & Horiuk, Y. (2022). The Effects of Antimicrobial Residues on Microbiological Content and the Antibiotic Resistance in Frozen Fish. In World’s Veterinary Journal (pp. 374–381). Scienceline Publication. https://doi.org/10.54203/scil.2022.wvj47

19. Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. In The Lancet (Vol. 399, Issue 10325, pp. 629–655). Elsevier BV. https://doi.org/10.1016/s0140-6736(21)02724-0

20. Calahorrano-Moreno, M. B., Ordoñez-Bailon, J. J., Baquerizo-Crespo, R. J., Dueñas-Rivadeneira, A. A., B. S. M. Montenegro, M. C., & Rodríguez-Díaz, J. M. (2022). Contaminants in the cow’s milk we consume? Pasteurization and other technologies in the elimination of contaminants. In F1000Research (Vol. 11, p. 91). F1000 Research Ltd. https://doi.org/10.12688/f1000research.108779.1

21. Sebastianski, M., Bridger, N. A., Featherstone, R. M., & Robinson, J. L. (2022). Disease outbreaks linked to pasteurized and unpasteurized dairy products in Canada and the United States: a systematic review. In Canadian Journal of Public Health (Vol. 113, Issue 4, pp. 569–578). Springer Science and Business Media LLC. https://doi.org/10.17269/s41997-022-00614-y

22. Azizi-Lalabadi, M., Moghaddam, N. R., & Jafari, S. M. (2023). Pasteurization in the food industry. In Thermal Processing of Food Products by Steam and Hot Water (pp. 247–273). Elsevier. https://doi.org/10.1016/b978-0-12-818616-9.00009-2

23. James, S. J., & James, C. (2023). Chilling and Freezing. In Food Safety Management (pp. 453–474). Elsevier. https://doi.org/10.1016/b978-0-12-820013-1.00005-x

24. Huang, H.-W., Hsu, C.-P., & Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. In Journal of Food and Drug Analysis (Vol. 28, Issue 1, pp. 1–13). The Journal of Food and Drug Analysis (JFDA), Food and Drug Administration, Taiwan (TFDA). https://doi.org/10.1016/j.jfda.2019.10.002

25. Pandiselvam, R., Aydar, A. Y., Kutlu, N., Aslam, R., Sahni, P., Mitharwal, S., Gavahian, M., Kumar, M., Raposo, A., Yoo, S., Han, H., & Kothakota, A. (2023). Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. In Ultrasonics Sonochemistry (Vol. 92, p. 106261). Elsevier BV. https://doi.org/10.1016/j.ultsonch.2022.106261

26. Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., & Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. In Chemical Engineering Journal (Vol. 417, p. 128084). Elsevier BV. https://doi.org/10.1016/j.cej.2020.128084

27. Martí-Quijal, F. J., Khubber, S., Remize, F., Tomasevic, I., Roselló-Soto, E., & Barba, F. J. (2021). Obtaining Antioxidants and Natural Preservatives from Food By-Products through Fermentation: A Review. In Fermentation (Vol. 7, Issue 3, p. 106). MDPI AG. https://doi.org/10.3390/fermentation7030106

28. Ullah, H., Hussain, Y., Santarcangelo, C., Baldi, A., Di Minno, A., Khan, H., Xiao, J., & Daglia, M. (2022). Natural Polyphenols for the Preservation of Meat and Dairy Products. In Molecules (Vol. 27, Issue 6, p. 1906). MDPI AG. https://doi.org/10.3390/molecules27061906

29. Zhang, Y., Yang, Q., Lu, F., Wang, X., Liang, R., Pu, X., Chen, J., Zhang, D., Chen, Z., & Zhang, X. (2024). Inhibitory effects of potassium sorbate and ZnO nanoparticles on Escherichia coli and Staphylococcus aureus in milk-based beverage. In International Dairy Journal (Vol. 159, p. 106073). Elsevier BV. https://doi.org/10.1016/j.idairyj.2024.106073

30. Ge, H., Fu, S., Guo, H., Hu, M., Xu, Z., Zhou, X., Chen, X., & Jiao, X. (2022). Application and challenge of bacteriophage in the food protection. In International Journal of Food Microbiology (Vol. 380, p. 109872). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2022.109872

31. Nagpal, R., Indugu, N., & Singh, P. (2021). Distinct Gut Microbiota Signatures in Mice Treated with Commonly Used Food Preservatives. In Microorganisms (Vol. 9, Issue 11, p. 2311). MDPI AG. https://doi.org/10.3390/microorganisms9112311

32. Gourama, H. (2020). Foodborne Pathogens. In Food Engineering Series (pp. 25–49). Springer International Publishing. https://doi.org/10.1007/978-3-030-42660-6_2

33. Vikram, A., Woolston, J., & Sulakvelidze, A. (2021). Phage Biocontrol Applications in Food Production and Processing. In Current Issues in Molecular Biology (pp. 267–302). MDPI AG. https://doi.org/10.21775/cimb.040.267

34. Ge, H., Fu, S., Guo, H., Hu, M., Xu, Z., Zhou, X., Chen, X., & Jiao, X. (2022). Application and challenge of bacteriophage in the food protection. In International Journal of Food Microbiology (Vol. 380, p. 109872). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2022.109872

35. Agún, S., Fernández, L., Rodríguez, A., & García, P. (2024). Phage lytic proteins: a natural approach to agro-food safety. In Food Science and Human Wellness. Tsinghua University Press. https://doi.org/10.26599/fshw.2024.9250128

36. Islam, Md. R., Martinez-Soto, C. E., Lin, J. T., Khursigara, C. M., Barbut, S., & Anany, H. (2021). A systematic review from basics to omics on bacteriophage applications in poultry production and processing. In Critical Reviews in Food Science and Nutrition (Vol. 63, Issue 18, pp. 3097–3129). Informa UK Limited. https://doi.org/10.1080/10408398.2021.1984200

37. Połaska, M., & Sokołowska, B. (2019). Bacteriophages—a new hope or a huge problem in the food industry. In AIMS Microbiology (Vol. 5, Issue 4, pp. 324–346). American Institute of Mathematical Sciences (AIMS). https://doi.org/10.3934/microbiol.2019.4.324

38. Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. In Antibiotics (Vol. 11, Issue 10, p. 1324). MDPI AG. https://doi.org/10.3390/antibiotics11101324

39. Wang, Z., & Zhao, X. (2022). The application and research progress of bacteriophages in food safety. In Journal of Applied Microbiology (Vol. 133, Issue 4, pp. 2137–2147). Oxford University Press (OUP). https://doi.org/10.1111/jam.15555

40. Horiuk, Y., Kukhtyn, M., Horiuk, V., Kernychnyi, S., & Tarasenko, L. (2020). Characteristics of bacteriophages of the Staphylococcus aureus variant bovis. In Veterinární medicína (Vol. 65, Issue 10, pp. 421–426). Czech Academy of Agricultural Sciences. https://doi.org/10.17221/55/2020-vetmed

41. Szczuka, E., Porada, K., Wesołowska, M., & Łęska, B. (2022). Occurrence and Characteristics of Staphylococcus aureus Isolated from Dairy Products. In Molecules (Vol. 27, Issue 14, p. 4649). MDPI AG. https://doi.org/10.3390/molecules27144649

42. Shi, C., Yu, Z., Ho, H., Wang, J., Wu, W., Xing, M., Wang, Y., Rahman, S. M. E., & Han, R. (2021). Occurrence, Antimicrobial Resistance Patterns, and Genetic Characterization of Staphylococcus aureus Isolated from Raw Milk in the Dairy Farms over Two Seasons in China. In Microbial Drug Resistance (Vol. 27, Issue 1, pp. 99–110). Mary Ann Liebert Inc. https://doi.org/10.1089/mdr.2019.0358

43. Şanlıbaba, P. (2022). Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. In International Journal of Food Microbiology (Vol. 361, p. 109461). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2021.109461

44. Mekhloufi, O. A., Chieffi, D., Hammoudi, A., Bensefia, S. A., Fanelli, F., & Fusco, V. (2021). Prevalence, Enterotoxigenic Potential and Antimicrobial Resistance of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Algerian Ready to Eat Foods. In Toxins (Vol. 13, Issue 12, p. 835). MDPI AG. https://doi.org/10.3390/toxins13120835

45. Badawy, B., Elafify, M., Farag, A. M. M., Moustafa, S. M., Sayed-Ahmed, M. Z., Moawad, A. A., Algammal, A. M., Ramadan, H., & Eltholth, M. (2022). Ecological Distribution of Virulent Multidrug-Resistant Staphylococcus aureus in Livestock, Environment, and Dairy Products. In Antibiotics (Vol. 11, Issue 11, p. 1651). MDPI AG. https://doi.org/10.3390/antibiotics11111651

46. Turchi, B., Campobasso, C., Nardinocchi, A., Wagemans, J., Torracca, B., Lood, C., Di Giuseppe, G., Nieri, P., Bertelloni, F., Turini, L., Ruffo, V., Lavigne, R., & Di Luca, M. (2024). Isolation and characterization of novel Staphylococcus aureus bacteriophage Hesat from dairy origin. In Applied Microbiology and Biotechnology (Vol. 108, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1007/s00253-024-13129-y

47. Bai, A. D., Lo, C. K. L., Komorowski, A. S., Suresh, M., Guo, K., Garg, A., Tandon, P., Senecal, J., Del Corpo, O., Stefanova, I., Fogarty, C., Butler-Laporte, G., McDonald, E. G., Cheng, M. P., Morris, A. M., Loeb, M., & Lee, T. C. (2022). Staphylococcus aureus bacteraemia mortality: a systematic review and meta-analysis. In Clinical Microbiology and Infection (Vol. 28, Issue 8, pp. 1076–1084). Elsevier BV. https://doi.org/10.1016/j.cmi.2022.03.015

48. Abbas, M., Rossel, A., de Kraker, M. E. A., von Dach, E., Marti, C., Emonet, S., Harbarth, S., Kaiser, L., & Uçkay, I. (2020). Association between treatment duration and mortality or relapse in adult patients with Staphylococcus aureus bacteraemia: a retrospective cohort study. In Clinical Microbiology and Infection (Vol. 26, Issue 5, pp. 626–631). Elsevier BV. https://doi.org/10.1016/j.cmi.2019.07.019

49. Park, S., & Ronholm, J. (2021). Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. In Clinical Microbiology Reviews (Vol. 34, Issue 2). American Society for Microbiology. https://doi.org/10.1128/cmr.00182-20

50. DSTU 3662:2018 Raw milk. Technical conditions. National Standard of Ukraine

51. De Buck, J., Ha, V., Naushad, S., Nobrega, D. B., Luby, C., Middleton, J. R., De Vliegher, S., & Barkema, H. W. (2021). Non-aureus Staphylococci and Bovine Udder Health: Current Understanding and Knowledge Gaps. In Frontiers in Veterinary Science (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fvets.2021.658031

52. Dahlberg, J., Williams, J. E., McGuire, M. A., Peterson, H. K., Östensson, K., Agenäs, S., Dicksved, J., & Waller, K. P. (2020). Microbiota of bovine milk, teat skin, and teat canal: Similarity and variation due to sampling technique and milk fraction. In Journal of Dairy Science (Vol. 103, Issue 8, pp. 7322–7330). American Dairy Science Association. https://doi.org/10.3168/jds.2019-17783

53. Ntuli, V., Sibanda, T., Elegbeleye, J. A., Mugadza, D. T., Seifu, E., & Buys, E. M. (2023). Dairy production: microbial safety of raw milk and processed milk products. In Present Knowledge in Food Safety (pp. 439–454). Elsevier. https://doi.org/10.1016/b978-0-12-819470-6.00076-7

54. Shugai, M. (2022). Safety and quality of cheesse: Staphylococcus aureus. In Food resources (Vol. 10, Issue 18, pp. 169–178). Publishing House of National Academy Agrarian Sciences of Ukraine. https://doi.org/10.31073/foodresources2022-18-17

55. Minutillo, R., Pirard, B., Fatihi, A., Cavaiuolo, M., Lefebvre, D., Gérard, A., Taminiau, B., Nia, Y., Hennekinne, J.-A., Daube, G., & Clinquart, A. (2023). The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium. In Foods (Vol. 12, Issue 21, p. 4019). MDPI AG. https://doi.org/10.3390/foods12214019

56. Le, T. S., Southgate, P. C., O’Connor, W., Abramov, T., Shelley, D., V. Vu, S., & Kurtböke, D. İ. (2020). Use of Bacteriophages to Control Vibrio Contamination of Microalgae Used as a Food Source for Oyster Larvae During Hatchery Culture. In Current Microbiology (Vol. 77, Issue 8, pp. 1811–1820). Springer Science and Business Media LLC. https://doi.org/10.1007/s00284-020-01981-w

57. Philippe, C., Cornuault, J. K., de Melo, A. G., Morin-Pelchat, R., Jolicoeur, A. P., & Moineau, S. (2023). The never-ending battle between lactic acid bacteria and their phages. In FEMS Microbiology Reviews (Vol. 47, Issue 4). Oxford University Press (OUP). https://doi.org/10.1093/femsre/fuad035

58. Horiuk, Y., Kukhtyn, M., Kernychnyi, S., Laiter-Moskaliuk, S., Prosyanyi, S., & Boltyk, N. (2021). Sensitivity of Staphylococcus aureus cultures of different biological origin to commercial bacteriophages and phages of Staphylococcus aureus var. bovis. In Veterinary World (pp. 1588–1593). Veterinary World. https://doi.org/10.14202/vetworld.2021.1588-1593

59. Kukhtyn, M., Arutiunian, D., Pokotylo, O., Kravcheniuk, K., Salata, V., Horiuk, Y., Karpyk, H., & Dalievska, D. (2024). Microbiological characteristics of hard cheese with flax seeds. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, pp. 281–296). HACCP Consulting. https://doi.org/10.5219/1956

60. Ortiz Charneco, G., de Waal, P. P., van Rijswijck, I. M. H., van Peij, N. N. M. E., van Sinderen, D., & Mahony, J. (2023). Bacteriophages in the Dairy Industry: A Problem Solved? In Annual Review of Food Science and Technology (Vol. 14, Issue 1, pp. 367–385). Annual Reviews. https://doi.org/10.1146/annurev-food-060721-015928

61. Rodríguez-Rubio, L., Martínez, B., Donovan, D. M., García, P., & Rodríguez, A. (2013). Potential of the Virion-Associated Peptidoglycan Hydrolase HydH5 and Its Derivative Fusion Proteins in Milk Biopreservation. In P. L. Ho (Ed.), PLoS ONE (Vol. 8, Issue 1, p. e54828). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0054828

62. Verbree, C. T., Dätwyler, S. M., Meile, S., Eichenseher, F., Donovan, D. M., Loessner, M. J., & Schmelcher, M. (2018). Corrected and Republished from: Identification of Peptidoglycan Hydrolase Constructs with Synergistic Staphylolytic Activity in Cow’s Milk. In D. W. Schaffner (Ed.), Applied and Environmental Microbiology (Vol. 84, Issue 1). American Society for Microbiology. https://doi.org/10.1128/aem.02134-17

63. Son, B., Kong, M., Lee, Y., & Ryu, S. (2021). Development of a Novel Chimeric Endolysin, Lys109 With Enhanced Lytic Activity Against Staphylococcus aureus. In Frontiers in Microbiology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fmicb.2020.615887

Downloads

Published

2025-04-16

Issue

Section

Articles

How to Cite

Development and evaluation of technology for preserving hard cheese with staphylococcal bacteriophage. (2025). Scifood, 19(1), 208-223. https://doi.org/10.5219/scifood.16