Susceptibility of microflora to antibacterial drugs at different stages of hard rennet cheese production
DOI:
https://doi.org/10.5219/scifood.58Keywords:
milk, cheese, bacteria, antibacterial drugs, antimicrobial resistanceAbstract
The research aimed to analyze the susceptibility of milk microflora isolated at different stages of hard rennet cheese production and its evaluation. The susceptibility to antibacterial drugs of isolated cultures of bacteria Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii, which were found in the finished product, was determined. For each study, 15 samples of bacterial cultures were selected, and the experiment was conducted in triplicate. A total of 180 bacterial culture samples were examined. The disk diffusion method was used to determine the susceptibility of bacteria to antibacterial drugs. Studies of the resistance of bacteria isolated at different stages of hard rennet cheese “Ukrainian” production showed that the final product contains Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii resistant to certain antibacterial drugs, which may pose a health threat to consumers. Among the microflora isolated from raw milk, Escherichia coli was resistant to fluoroquinolones, penicillins, cephalosporins, tetracyclines, aminoglycosides, trimethoprim, and fosfomycin. In the normalized mixture, Escherichia coli was resistant to gentamicin and amikacin and moderately resistant to doxycycline. After pasteurization, Escherichia coli was susceptible to ciprofloxacin and resistant to all other tested antibacterial drugs. Resistance to gentamicin and amikacin, as well as moderate resistance to doxycycline, was maintained at almost every stage of production and in the final product. After pasteurization, these bacteria isolated from the brine became resistant to most antibacterial drugs, except for ciprofloxacin, gentamicin, amikacin, and fosfomycin. Klebsiella pneumoniae, isolated from the brine, was resistant to ampicillin after its pasteurization. It was resistant to fosfomycin both before and after pasteurisation of the brine. The bacterium isolated from the finished cheese retained resistance to fosfomycin and ampicillin. Acinetobacter baumannii, isolated from both the raw milk and the final product, was resistant to cefotaxime. Moderate susceptibility to amikacin and fosfomycin was restored after cheese maturation.
References
1. Myers, J., Hennessey, M., Arnold, J.-C., McCubbin, K. D., Lembo, T., Mateus, A., Kitutu, F. E., Samanta, I., Hutchinson, E., Davis, A., Mmbaga, B. T., Nasuwa, F., Gautham, M., & Clarke, S. E. (2022). Crossover-Use of Human Antibiotics in Livestock in Agricultural Communities: A Qualitative Cross-Country Comparison between Uganda, Tanzania, and India. In Antibiotics (Vol. 11, Issue 10, p. 1342). MDPI AG. https://doi.org/10.3390/antibiotics11101342
2. Galaburda, M., Yustyniuk, V., Kuzminska, O., Galat, M., & Correa, M. (2022). Awareness of antibiotic resistance for the environmental health and sustainable development: a cross-sectional study. In IOP Conference Series: Earth and Environmental Science (Vol. 1049, Issue 1, p. 012045). IOP Publishing. https://doi.org/10.1088/1755-1315/1049/1/012045
3. Shevchenko, L. V., Dobrozhan, Y. V., Mykhalska, V. M., Osipova, T. Y., & Solomon, V. V. (2019). Contamination of hen manure with nine antibiotics in poultry farms in Ukraine. In Regulatory Mechanisms in Biosystems (Vol. 10, Issue 4, pp. 532–537). OlesHonchar Dnipropetrovsk National University. https://doi.org/10.15421/021978
4. Kunhikannan, S., Thomas, C. J., Franks, A. E., Mahadevaiah, S., Kumar, S., &Petrovski, S. (2021). Environmental hotspots for antibiotic resistance genes. In MicrobiologyOpen (Vol. 10, Issue 3). Wiley. https://doi.org/10.1002/mbo3.1197
5. Hrustemović, E., Čaklovica, F., Đeđibegović, J., & Čaklovica, K. (2022). Antibiotic Resistance in Escherichia coli from Animals, Food, and Humans. In Indonesian Bulletin of Animal and Veterinary Sciences (Vol. 32, Issue 1). Indonesian Center for Animal Research and Development (ICARD). https://doi.org/10.14334/wartazoa.v32i1.2965
6. Ganan, M., Silván, J. M., Carrascosa, A. V., & Martínez-Rodríguez, A. J. (2012). Alternative strategies to use antibiotics or chemical products for controlling Campylobacter in the food chain. In Food Control (Vol. 24, Issues 1–2, pp. 6–14). Elsevier BV. https://doi.org/10.1016/j.foodcont.2011.09.027
7. Samy, A. A., Mansour, A. S., Khalaf, D. D., &Khairy, E. A. (2022). Development of multidrug-resistant Escherichia coli in some Egyptian veterinary farms. In Veterinary World (pp. 488–495). Veterinary World. https://doi.org/10.14202/vetworld.2022.488-495
8. Danchuk, V., Ushkalov, V., Midyk, S., Vigovska, L., Danchuk, O., &Korniyenko, V. (2021). Milk lipids and subclinical mastitis. In Food Science and Technology (Vol. 15, Issue 2). Odesa National University of Technology. https://doi.org/10.15673/fst.v15i2.2103
9. Sadvari, V. Y., Shevchenko, L. V., Slobodyanyuk, N. M., Tupitska, O. M., Gruntkovskyi, M. S., & Furman, S. V. (2024). Microbiome of craft hard cheeses from raw goat milk during ripening. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 3, pp. 483–489). OlesHonchar Dnipropetrovsk National University. https://doi.org/10.15421/022468
10. Sadvari, V. Y., Shevchenko, L. V., Slobodyanyuk, N. M., Furman, S. V., Lisohurska, D. V., &Lisohurska, O. V. (2024). Chemical composition of craft hard cheeses from raw goat milk during ripening. In Regulatory Mechanisms in Biosystems,(Vol. 15, Issue 4, pp. 666-673). OlesHonchar Dnipropetrovsk National University. https://doi.org/10.15421/022496.
11. Wemette, M., Greiner Safi, A., Wolverton, A. K., Beauvais, W., Shapiro, M., Moroni, P., Welcome, F. L., &Ivanek, R. (2021). Public perceptions of antibiotic use on dairy farms in the United States. In Journal of Dairy Science (Vol. 104, Issue 3, pp. 2807–2821). American Dairy Science Association. https://doi.org/10.3168/jds.2019-17673
12. Bulut, E., Stout, A., Wemette, M., Llanos‐Soto, S., Schell, R. C., Greiner Safi, A., Shapiro, M. A., Moroni, P., &Ivanek, R. (2021). How does public perception of antibiotic use on dairy farms contribute to self‐reported organic purchasing? In Journal of Food Science (Vol. 86, Issue 5, pp. 2045–2060). Wiley. https://doi.org/10.1111/1750-3841.15720
13. Krukowski, H., Bis-Wencel, H., &Prystupa, A. (2023). Milk and cheese are a source of human infection. In Medycyna Weterynaryjna (Vol. 79, Issue 07, pp. 6780–2023). MedycynaWeterynaryjna - Redakcja. https://doi.org/10.21521/mw.6780
14. Asfaw, T., Genetu, D., Shenkute, D., Shenkutie, T. T., Amare, Y. E., Habteweld, H. A., &Yitayew, B. (2023). Pathogenic Bacteria and Their Antibiotic Resistance Patterns in Milk, Yoghurt, and Milk Contact Surfaces in Debre Berhan Town, Ethiopia. In Infection and Drug Resistance: Vol. Volume 16 (pp. 4297–4309). Informa UK Limited. https://doi.org/10.2147/idr.s418793
15. Shalaby, M., Reboud, J., Forde, T., Zadoks, R. N., &Busin, V. (2024). Distribution and prevalence of enterotoxigenic Staphylococcus aureus and staphylococcal enterotoxins in raw ruminants’ milk: A systematic review. In Food Microbiology (Vol. 118, p. 104405). Elsevier BV. https://doi.org/10.1016/j.fm.2023.104405
16. Amidi-Fazli, N., &Hanifian, S. (2022). Biodiversity, antibiotic resistance, and virulence traits of Enterococcus species in artisanal dairy products. In International Dairy Journal (Vol. 129, p. 105287). Elsevier BV. https://doi.org/10.1016/j.idairyj.2021.105287
17. Avila-Novoa, M. G., González-Gómez, J.-P., Guerrero-Medina, P. J., Cardona-López, M. A., Ibarra-Velazquez, L. M., Velazquez-Suarez, N. Y., Morales-del Río, J.-A., & Gutiérrez-Lomelí, M. (2021). Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains isolated from dairy products: Relationship of ica-dependent/independent and components of biofilms produced in vitro. In International Dairy Journal (Vol. 119, p. 105066). Elsevier BV. https://doi.org/10.1016/j.idairyj.2021.105066
18. Dell’Orco, F., Gusmara, C., Loiacono, M., Gugliotta, T., Albonico, F., Mortarino, M., &Zecconi, A. (2019). Evaluation of virulence factor profiles and antimicrobial resistance of Escherichia coli isolated from bulk tank milk and raw milk filters. In Research in Veterinary Science (Vol. 123, pp. 77–83). Elsevier BV. https://doi.org/10.1016/j.rvsc.2018.12.011
19. Dey, T. K., Shome, B. R., Bandyopadhyay, S., Goyal, N. K., Lundkvist, Å., Deka, R. P., Shome, R., Venugopal, N., Grace, D., Sharma, G., Rahman, H., & Lindahl, J. F. (2023). Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. In Pathogens (Vol. 12, Issue 2, p. 344). MDPI AG. https://doi.org/10.3390/pathogens12020344
20. Yao, J., Gao, J., Guo, J., Wang, H., Zhang, E., Lin, Y., Chen, Z., Li, S., & Tao, S. (2022). Characterization of Bacteria and Antibiotic Resistance in Commercially Produced Cheeses Sold in China. In Journal of Food Protection (Vol. 85, Issue 3, pp. 484–493). Elsevier BV. https://doi.org/10.4315/jfp-21-198
21. Nunziata, L., Brasca, M., Morandi, S., &Silvetti, T. (2022). Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. In Food Microbiology (Vol. 104, p. 103999). Elsevier BV. https://doi.org/10.1016/j.fm.2022.103999
22. Mylostyvyi, R., Midyk, S., Izhboldina, O., Cherniy, N., & Kornienko, V. (2023). Changes in the qualitative composition of the milk of Holstein cows during summer chronic heat stress. JurnalIlmuTernak dan Veteriner, (Vol 28, Issue 2, pp.112–121). https://doi.org/10.14334/jitv.v28.i2.3151
23. Sadvari, V. Y., Shevchenko, L. V., Midyk, S. V., Korniyenko, V. I., Slobodyanyuk, N. M., Pylypchuk, О. S., Naumenko, T. V., & Stetsiuk, I. M. (2025). Fatty acid profile of artisanal hard cheeses made from raw goat milk during the ripening process. Regulatory Mechanisms in Biosystems, 33(1), e25002. https://doi.org/10.15421/0225002
24. Garbaj, A. M., Gawella, T. B. B., Sherif, J. A., Naas, H. T., Eshamah, H. L., Azwai, S. M., Gammoudi, F. T., Abolghait, S. K., Moawad, A. A., Barbieri, I., &Eldaghayes, I. M. (2022). Occurrence and antibiogram of multidrug-resistant Salmonella enterica isolated from dairy products in Libya. In Veterinary World (pp. 1185–1190). Veterinary World. https://doi.org/10.14202/vetworld.2022.1185-1190
25. European Committee on Antimicrobial Susceptibility Testing EUCAST. Retrieved from: https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=566&cHash=db55f3a8829726044512a1fe74cce41b#:~:text=EUCAST%20breakpoint%20table%2014.0
26. RI.BLS 7.2-09/05 Schemes for determining the sensitivity of microorganisms to antibacterial drugs by various methods.
27. Iakubchak, O., Martynenko, O., Taran, T., Pylypchuk, O., Naumenko, T., Tverezovska, N., Menchynska, A., &Stetsyuk, I. (2024). Analysis of the hard rennet cheese microbiota at different stages of the technological process. In Potravinarstvo, Slovak Journal of Food Sciences (Vol. 18, pp. 899–918). HACCP Consulting. https://doi.org/10.5219/2011
28. Drugea, R. I., Siteavu, M. I., Pitoiu, E., Delcaru, C., Sârbu, E. M., Postolache, C., & Bărăităreanu, S. (2025). Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow’s Milk. Microorganisms (Vol. 13, Issue 1, p. 209). https://doi.org/10.3390/microorganisms13010209
29. Nahar, A., Islam, A. K. M. A., Islam, M. N., Khan, M. K., Khan, M. S., Rahman, A. K. M. A., & Alam, M. M. (2023). Molecular characterization and antibiotic resistance profile of ESBL-producing Escherichia coli isolated from healthy cow raw milk in smallholder dairy farms in Bangladesh. Veterinary world (Vol. 16, Issue 6, p. 1333–1339). https://doi.org/10.14202/vetworld.2023.1333-1339
30. Tyasningsih, W., Ramandinianto, S. C., Ansharieta, R., Witaningrum, A. M., Permatasari, D. A., Wardhana, D. K., Effendi, M. H., & Ugbo, E. N. (2022). Prevalence and antibiotic resistance of Staphylococcus aureus and Escherichia coli isolated from raw milk in East Java, Indonesia. Veterinary World (рp 2021–2028). https://doi.org/10.14202/vetworld.2022.2021-2028
31. Iakubchak, O. M., Vivych, A. Y., Hryb, J. V., Danylenko, S. Н., & Taran, T. V. (2024). Production and meat quality of broiler chickens with the use of a probiotic complex of bifidobacteria and lactobacilli. Regulatory Mechanisms in Biosystems, 15(3), 477–482. https://doi.org/10.15421/022467
32. Deb, R., Chaudhary, P., & De, S. (2022). CRISPR/cas9 cassette targeting the Escherichia coli blaCTX-M specific gene of mastitis cow milk origin can alter the antibiotic resistant phenotype for cefotaxime. Animal Biotechnology (Vol. 34, Issue 5, pp. 1849–1854). https://doi.org/10.1080/10495398.2022.2053695
33. Terzić-Vidojević, A., Veljović, K., Popović, N., Tolinački, M., &Golić, N. (2021). Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. In Foods (Vol. 10, Issue 11, p. 2753). MDPI AG. https://doi.org/10.3390/foods10112753
34. Didouh, N., Khadidja, M., Campos, C., Sampaio-Maia, B., Boumediene, M. B., & Araujo, R. (2023). Assessment of biofilm, enzyme production, and antibiotic susceptibility of bacteria from milk pre- and post-pasteurization pipelines in Algeria. In International Journal of Food Microbiology (Vol. 407, p. 110389). Elsevier BV. https://doi.org/10.1016/j.ijfoodmicro.2023.110389
35. Machado, M. A. M., Castro, V. S., da Cunha-Neto, A., Vallim, D. C., Pereira, R. de C. L., dos Reis, J. O., de Almeida, P. V., Galvan, D., Conte-Junior, C. A., &Figueiredo, E. E. de S. (2023). Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil. In Brazilian Journal of Microbiology (Vol. 54, Issue 2, pp. 1035–1046). Springer Science and Business Media LLC. https://doi.org/10.1007/s42770-023-00920-8
36. Vovkotrub, V., Kołacz, R., Iakubchak, O., Vovkotrub, N., & Shevchenko, L. (2024). Effect of lactic acid bacteria ferment cultures on pork freshness. Ukrainian Journal of Veterinary Sciences, 15(1), 48–65. https://doi.org/10.31548/veterinary1.2024.48
37. Statkevych, O. I., Kolomiiets, Y. V., Holembovska, N. V., Israelian, V. M., Babych, О. A., Slobodyanyuk, N. M., Babytskiy, A. I., & Statkevych, A. O. (2024). Effects of nutrient medium on various-age larvae of Hermetia illucens (Diptera, Stratiomyidae). Regulatory Mechanisms in Biosystems, 15(4), 907–911. https://doi.org/10.15421/0224131
38. Wang, S., Yu, Z., Wang, J., Ho, H., Yang, Y., Fan, R., Du, Q., Jiang, H., & Han, R. (2021). Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Chinese Fresh Milk Bar Milk. Journal of Food Protection (Vol. 84, Issue 11, pp. 1863-1867). https://doi.org/10.4315/JFP-21-094
39. Madani, A., Esfandiari, Z., Shoaei, P., & Ataei, B. (2022). Evaluation of Virulence Factors, Antibiotic Resistance, and Biofilm Formation of Escherichia coli Isolated from Milk and Dairy Products in Isfahan, Iran. Foods (Basel, Switzerland), (Vol. 11, Issue 7, pp. 960). https://doi.org/10.3390/foods11070960
40. Drugea, R.I., Siteavu, M.I., Bărăităreanu, S. (2023) Microbiological contamination of milk and the implications of bacterial strains in human pathology. RevistaRomâna de Medicina Veterinara (Vol. 33, Issue 2, pp. 55–68). https://agmv.ro/wp-content/uploads/2023/06/55_68_Drugea_14-c.pdf
41. Lokes, S., Shevchenko, L., Doronin, K., Mykhalska, V., Israelian, V., Holembovska, N., Tverezovska, N., & Savchenko, O. (2024). Influence of lactic acid bacteria starter cultures on microbiological parameters and shelf life of sausages. In Potravinarstvo, Slovak Journal of Food Sciences (Vol. 18, pp. 935–950). HACCP Consulting. https://doi.org/10.5219/2012
42. Nalepa, B., & Markiewicz, L. H. (2022). Microbiological Biodiversity of Regional Cow, Goat, and Ewe Milk Cheeses Produced in Poland and Antibiotic Resistance of Lactic Acid Bacteria Isolated from Them. In Animals (Vol. 13, Issue 1, p. 168). MDPI AG. https://doi.org/10.3390/ani13010168
43. de Campos, A. C. L. P., Puño-Sarmiento, J. J., Medeiros, L. P., Gazal, L. E. S., Maluta, R. P., Navarro, A., Kobayashi, R. K. T., Fagan, E. P., & Nakazato, G. (2018). Virulence Genes and Antimicrobial Resistance in Escherichia coli from Cheese Made from Unpasteurized Milk in Brazil. Foodborne Pathogens and Disease (Vol. 15, Issue 2, pp. 94–100. https://doi.org/10.1089/fpd.2017.2345
44. Hammad, A. M., Eltahan, A., Hassan, H. A., Abbas, N. H., Hussien, H., & Shimamoto, T. (2022). Loads of Coliforms and Fecal Coliforms and Characterization of Thermotolerant Escherichia coli in Fresh Raw Milk Cheese. Foods (Basel, Switzerland) (Vol. 11, Issue 3, p. 332). https://doi.org/10.3390/foods110303322
45. Rogoskii, I., Mushtruk, M., Titova, L., Snezhko, O., Rogach, S., Blesnyuk, O., Rosamaha, Y., Zubok, T., Yeremenko, O., & Nadtochiy, O. (2020). Engineering management of starter cultures in study of temperature of fermentation of sour-milk drink with apiproducts. Potravinarstvo Slovak Journal of Food Sciences, 14, 1047–1054. https://doi.org/10.5219/1437
46. Rosario, A. I. L. S., Castro, V. S., Santos, L. F., Lisboa, R. C., Vallim, D. C., Silva, M. C. A., Figueiredo, E. E. S., Conte-Junior, C. A., & Costa, M. P. (2021). Shiga toxin-producing Escherichia coli isolated from pasteurized dairy products from Bahia, Brazil. Journal of Dairy Science (Vol. 104, Issue 6, pp. 6535–6547). https://doi.org/10.3168/jds.2020-19511
47. Vovkotrub, V., Iakubchak, O., Vovkotrub, N., Shevchenko, L., Lebedenko, T., Holembovska, N., Pylypchuk, O., & Omelian, A. (2024). Quality and safety of pork meat after cooling and treatment with lactic starters. Potravinarstvo Slovak Journal of Food Sciences, 18, 439–452. https://doi.org/10.5219/1954
48. Azwai, S. M., Lawila, A. F., Eshamah, H. L., Sherif, J. A., Farag, S. A., Naas, H. T., Garbaj, A. M., Salabi, A. A. E., Gammoudi, F. T., & Eldaghayes, I. M. (2024). Antimicrobial susceptibility profile of Klebsiella pneumoniae isolated from some dairy products in Libya as a foodborne pathogen. Veterinary world (Vol. 17, Issue 5, pp. 1168–1176). https://doi.org/10.14202/vetworld.2024.1168-1176
49. Garrouste-Orgeas, M., Marie, O., Rouveau, M., Villiers, S., Arlet, G., & Schlemmer, B. (1996). Secondary carriage with multi-resistant Acinetobacter baumannii and Klebsiella pneumoniae in an adult ICU population: relationship with nosocomial infections and mortality. The Journal of Hospital Infection (Vol. 34, Issue 4, pp. 279–289). https://doi.org/10.1016/s0195-6701(96)90108-5
50. Elbehiry, A., Marzouk, E., Moussa, I. M., Dawoud, T. M., Mubarak, A. S., Al-Sarar, D., Alsubki, R. A., Alhaji, J. H., Hamada, M., Abalkhail, A., A. Hemeg, H., & Zahran, R. N. (2021). Acinetobacter baumannii as a community foodborne pathogen: Peptide mass fingerprinting analysis, genotypic analysis of biofilm formation, and phenotypic pattern of antimicrobial resistance. Saudi Journal of Biological Sciences (Vol. 28, Issue 1, pp. 1158–1166). https://doi.org/10.1016/j.sjbs.2020.11.052
51. Dahiru, M. & Enabulele, O. (2015). Acinetobacter baumannii in Birds’ Feces: A Public Health Threat to Vegetables and Irrigation Farmers. Advances in Microbiology (Vol. 5, Issue 10, pp. 693–698). https://doi.org/10.4236/aim.2015.510072
52. Sadvari, V. Y., Shevchenko, L. V., Slobodyanyuk, N. M., Tupitska, O. M., Gruntkovskyi, M. S., & Furman, S. V. (2024). Microbiome of craft hard cheeses from raw goat milk during ripening. Regulatory Mechanisms in Biosystems, 15(3), 483–489. https://doi.org/10.15421/022468
53. Jovanovska, V. J., Sovreski, Z. S., Arapceska, M. A., Dimitrovska, G. D., Bojkovska, K. B., Joshevska, E. J., & Jovanovska, K. J. (2017). Devices for bactofugation in the function of providing quality long–life milk. Banat's Journal of Biotechnology, (Vol. 8, Issue 15, pp. 12–17). https://doi.org/10.7904/2068-4738-viii(15)-12
54. Rasheed, M. U., Thajuddin, N., Ahamed, P., Teklemariam, Z., & Jamil, K. (2014). Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Revista do Instituto de Medicina Tropical de São Paulo (Vol. 56, Issue 4, pp. 341–346). https://doi.org/10.1590/s0036-46652014000400012
55. Cullmann, W., & Dick, W. (1990). Influence of Temperature on Beta-Lactamase Production and Outer Membrane Proteins in Gram-Negative Rods. Chemotherapy (Vol. 36, Issue 4, pp. 277–286). https://doi.org/10.1159/000238778
56. Liu, C., Sun, S., Sun, Y., Li, X., Gu, W., Luo, Y., Wang, N., & Wang, Q. (2024). Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. Science of the Total Environment (Vol. 939, p. 173498). https://doi.org/10.1016/j.scitotenv.2024.173498
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Olha Iakubchak, Olha Martynenko, Tetiana Taran, Alina Menchynska, Mykola Nikolaenko, Oleksandr Savchenko, Yevheniia Marchyshyna, Alina Omelian (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.