Comparative evaluation of quality composition, fatty acid profiles, and seasonal variability of kumys from mare’s milk

Authors

  • Togzhan Boranbayeva Kazakh National Agrarian Research University, Faculty of Engineering and Technology, Department of "Technology of Food Production and Food Safety", Abay str, 8, 050010, Almaty, Kazakhstan, Tel.: +7702 169 7035 Author https://orcid.org/0000-0002-1159-1200
  • Zhanna Dossimova Kazakh National Agrarian Research University, Reference Laboratory of Dairy Products, Abay str, 8, 050010, Almaty, Kazakhstan, Tel: +77074394182 Author https://orcid.org/0000-0002-8757-0617
  • Dulat Zhalеlov Kazakh national agrarian research university, Faculty of Engineering and Technology, Department of "Technology of Food Production and Food Safety", Abay str, 8, 050010, Almaty, Kazakhstan, Tel: +7777 188 3689 Author https://orcid.org/0000-0002-9688-2639
  • Ayazhan Bolat Kazakh National Agrarian Research University, Reference Laboratory of Dairy Products, Abay str, 8, 050010, Almaty, Kazakhstan, Tel: +77087583796 Author https://orcid.org/0000-0001-6263-9094
  • Aida Abzhaliyeva Kazakh National Agrarian Research University, Faculty of Veterinary Science, Department of "Veterinary Sanitary Expertise", Abay str, 8, 050010, Almaty, Kazakhstan, Tel: +77784099470 Author https://orcid.org/0000-0002-5462-8261
  • Maxat Toishimanov Kazakh National Agrarian Research University, Kazakhstan-Japan innovation center, Food and environment safety laboratory, Abay str, 8, 050010, Almaty, Kazakhstan, Tel: +77079193922 Author https://orcid.org/0000-0002-6070-4574

DOI:

https://doi.org/10.5219/scifood.52

Keywords:

mare’s milk, kumys, fatty acid, lactation, fermented dairy product

Abstract

Kumys, a traditional fermented dairy product derived from mare’s milk, possesses unique nutritional properties with significant potential in the functional food market. This study presents a comparative evaluation the chemical composition, and fatty acid profiles of kumys obtained from Kazakh mare’s milk across two key regions in southern Kazakhstan (Almaty and Zhambyl) over five months of lactation (July to November). A total of 240 kumys samples were analyzed using MilkoScan FT1 for standard milk parameters and gas chromatography GC Shimadzu GC-2010 Plus for fatty acid profiling. Principal component analysis (PCA), ANOVA, and correlation analysis were applied to explore regional and seasonal variation. The results revealed significant differences in the composition between regions and across lactation months. Kumys from the Almaty region exhibited higher levels of protein (1.59% vs. 1.41%), lactose (5.68% vs. 5.12%), and solids-not-fat, while Zhambyl samples showed higher fat content (1.86% vs. 1.52%) and more favorable thrombogenic index (TI) values. Notably, linoleic acid (C18:2n6c) content increased by 28% from July (0.46 g/100g fat) to November (0.59 g/100g fat), and alpha-linolenic acid (C18:3n3c) increased by 21% over the same period.. The n-6/n-3 ratio improved significantly in autumn months, particularly in Zhambyl, suggesting enhanced health-promoting qualities. PCA distinguished samples based on both geographic and seasonal factors, with lactation stage having a more substantial impact on kumys composition than region. These findings underscore the importance of lactation month and regional pasture characteristics in shaping the nutritional value of kumys and provide a scientific basis for optimizing their production and valorization in the dairy sector.

References

1. Kondybayev, A., Loiseau, G., Achir, N., Mestres, C., & Konuspayeva, G. (2021). Fermented mare milk product (Qymyz, Koumiss). International Dairy Journal, 119, 105065. https://doi.org/10.1016/j.idairyj.2021.105065

2. Afzaal, M., Saeed, F., Anjum, F., Waris, N., Husaain, M., Ikram, A., Ateeq, H., Muhammad Anjum, F., & Suleria, H. (2021). Nutritional and ethnomedicinal scenario of koumiss: A concurrent review. Food Science & Nutrition, 9(11), 6421–6428. https://doi.org/10.1002/fsn3.2595

3. D'Este, M., Alvarado-Morales, M., & Angelidaki, I. (2018). Amino acids production focusing on fermentation technologies–A review. Biotechnology advances, 36(1), 14-25. https://doi.org/10.1016/j.biotechadv.2017.09.001

4. Siddiqui, S. A., Erol, Z., Rugji, J., Taşçı, F., Kahraman, H. A., Toppi, V., Musa, L., Giacinto, G.D., Bahmid, N. A., Mehdizadeh, M. & Castro-Muñoz, R. (2023). An overview of fermentation in the food industry-looking back from a new perspective. Bioresources and Bioprocessing, 10(1), 85. https://doi.org/10.1186/s40643-023-00702-y

5. Li, Q., Zhao, Y., Siqin, B., Xilin, T., Zhang, N., & Li, M. (2022). Changes in microbial diversity and nutritional components of mare milk before and after traditional fermentation. Frontiers in Sustainable Food Systems, 6, Article 913763. https://doi.org/10.3389/fsufs.2022.913763

6. Boranbayeva, T., Dossimova, Z., Zhalеlov D., Zhunisbek, A., Bolat, A., Abzhaliyeva, A., & Toishimanov, M. (2024). Influence of stage lactation on quality and protein compositions of Kazakh mare milk and koumiss. Potravinarstvo Slovak Journal of Food Sciences, 18, 964–976. https://doi.org/10.5219/2026

7. Polidori, P., Cammertoni, N., Santini, G., Klimanova, Y., Zhang, J. J., & Vincenzetti, S. (2021). Nutritional properties of camelids and equids fresh and fermented milk. Dairy, 2(2), 288-302. https://doi.org/10.3390/dairy2020024

8. Barreto, Í. M. L. G., Rangel, A. H. D. N., Urbano, S. A., Bezerra, J. D. S., & Oliveira, C. A. D. A. (2019). Equine milk and its potential use in the human diet. Food science and technology, 39, 1-7. https://doi.org/10.1590/fst.11218

9. Saleem, G. N., Gu, R., Qu, H., Bahar Khaskheli, G., Rashid Rajput, I., Qasim, M., & Chen, X. (2024). Therapeutic potential of popular fermented dairy products and its benefits on human health. Frontiers in Nutrition, 11, 1328620. https://doi.org/10.3389/fnut.2024.1328620

10. Wei, T., Zhou, T., Zhang, S., Quan, Z., & Liu, Y. (2025). Non Targeted Lipidomics Analysis of Characteristic Milk Using High Resolution Mass Spectrometry (UHPLC HRMS). Foods, 14(12), 2068. https://doi.org/10.3390/foods14122068

11. Toishimanov, M., Zhanten, O., Kanat, R., Beishova, I., Ulyanov, V., Assanbayev, T., Sharapatov, T., Daurov, D., Daurova, A., Sapakhova, Z., Nametov, A., & Shamekova, M. (2025). The effects of the lactation period, mare age, and foaling on the chemical and physical composition of milk from Kazakh mares kept under natural pasture conditions. Animals, 15(12), 1817. https://doi.org/10.3390/ani15121817

12. Kong, F., Zhao, Q., Wang, S., Mu, G., & Wu, X. (2025). Comparative study on the physical and chemical properties influenced by variations in fermentation bacteria groups: Inoculating different fermented mare’s milk into cow’s milk. Foods, 14(8), 1328. https://doi.org/10.3390/foods14081328

13. Mituniewicz-Małek, A., Ziarno, M., Dmytrów, I., & Szkolnicka, K. (2025). Survivability of probiotic microflora in fermented and non-fermented mare’s milk: A comparative study. Applied Sciences, 15(2), 862. https://doi.org/10.3390/app15020862

14. Rivero, M. J., Cooke, A. S., Gandarillas, M., Leon, R., Merino, V. M., & Velásquez, A. (2024). Nutritional composition, fatty acids profile and immunoglobulin G concentrations of mare milk of the Chilean Corralero horse breed. PloS one, 19(9), e0310693. https://doi.org/10.1371/journal.pone.0310693

15. Barłowska, J., Polak, G., Janczarek, I., & Tkaczyk, E. (2023). The influence of selected factors on the nutritional value of the milk of cold-blooded mares: The example of the Sokólski breed. Animals, 13(7), 1152. https://doi.org/10.3390/ani13071152

16. Parmar, P., Lopez-Villalobos, N., Tobin, J. T., Murphy, E., McDonagh, A., Crowley, S. V., Kelly, A.L. & Shalloo, L. (2020). The effect of compositional changes due to seasonal variation on milk density and the determination of season-based density conversion factors for use in the dairy industry. Foods, 9(8), 1004. https://doi.org/10.3390/foods9081004

17. Kurmanbayeva, M., Rašeta, M., Sarsenbek, B., Kusmangazinov, A., Zhumagul, M., Karabalayeva, D., ... & Toishimanov, M. (2024). Comparison of fatty acids and amino acids profiles of the selected perennial and annual wheat varieties from Kazakhstan. Natural product research, 1-6. https://doi.org/10.1080/14786419.2024.2305654

18. Toishimanov, M., Nurgaliyeva, M., Serikbayeva, A., Suleimenova, Z., Myrzabek, K., Shokan, A., & Myrzabayeva, N. (2023). Comparative analysis and determination of the fatty acid composition of Kazakhstan’s commercial vegetable oils by GC-FID. Applied Sciences, 13(13), 7910. https://doi.org/10.3390/app13137910

19. Jastrzębska, A., Zochowska-Kujawska, J., Brodziak, A., Krzyżewski, J., & Wierzbicka, A. (2017). Changes in chemical composition and fatty acid profile of mares’ milk during lactation. Journal of the Science of Food and Agriculture, 97(10), 3355–3360. https://doi.org/10.1002/jsfa.8202

20. Popova, T., Ignatova, M., & Petkov, E. (2019). Effect of pasture vegetation and feeding season on milk composition in grazing mares. Emirates Journal of Food and Agriculture, 31(8), 634–641. https://doi.org/10.9755/ejfa.2019.v31.i8.1995

21. Rakhmanova, A., Wang, T., Xing, G., Ma, L., Hong, Y., Lu, Y., Xin, L., Xin, W., Zhu, Q., & Lü, X. (2021). Isolation and identification of microorganisms in Kazakhstan koumiss and their application in preparing cow-milk koumiss. Journal of dairy science, 104(1), 151-166. https://doi.org/10.3168/jds.2020-18527

22. Pacheco-Pappenheim, S., Yener, S., Heck, J. M., Dijkstra, J., & van Valenberg, H. J. (2021). Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. Journal of dairy science, 104(8), 8479-8492. https://doi.org/10.3168/jds.2020-19856

23. Kossaliyeva, G., Rysbekuly, K., Zhaparkulova, K., Kozykan, S., Li, J., Serikbayeva, A., Shynykul, Z., Zhaparkulova, M., & Yessimsiitova, Z. (2025). Chemical composition, physical properties, and immunomodulating study of mare’s milk of the Adaev horse breed from Kazakhstan. Frontiers in Nutrition, 12. https://doi.org/10.3389/fnut.2025.1443031

24. Ibrayeva, A., Mukasheva, B., & Mursalykova, M. (2024). Development of technologies for improving the quality of mare’s milk-based products: composition analysis, fermentation, and drying. Endless light in science, 31, 82-87. Retrieved from: https://cyberleninka.ru/article/n/development-of-technologies-for-improving-the-quality-of-mare-s-milk-based-products-composition-analysis-fermentation-and-drying

25. Liu, W., Wang, J., Zhang, J., Mi, Z., Gesudu, Q., & Sun, T. (2019). Dynamic evaluation of the nutritional composition of homemade koumiss from Inner Mongolia during the fermentation process. Journal of Food Processing and Preservation, 43(8). https://doi.org/10.1111/jfpp.14022

26. Doreau, M., & Martuzzi, F. (2006). Milk yield of nursing and dairy mares. In Nutrition and feeding of the broodmare (pp. 57–64). Brill | Wageningen Academic. https://doi.org/10.3920/9789086865840_006

27. Smanalieva, J., Iskakova, J., & Musulmanova, M. (2022). Milk-and cereal-based Kyrgyz ethnic foods. International Journal of Gastronomy and Food Science, 29, 100507. https://doi.org/10.1016/j.ijgfs.2022.100507

28. Doreau, M., & Martuzzi, F. (2006). Milk yield of nursing and dairy mares. Nutrition and feeding of the broodmare, 57-64. https://doi.org/10.3920/9789086865840_006

29. Doreau, M., & Martuzzi, F. (2006). Fat content and composition of mare’s milk. In Nutrition and Feeding of the Broodmare (pp. 77-87). Wageningen Academic. https://doi.org/10.3920/9789086865840_008

30. Pecka, E., Dobrzański, Z., Zachwieja, A., Szulc, T., & Czyż, K. (2012). Studies of composition and major protein level in milk and colostrum of mares. Animal Science Journal, 83(2), 162–168. https://doi.org/10.1111/j.1740-0929.2011.00930.x

31. Blanco-Doval, A., Barron, L. J. R., & Aldai, N. (2024). Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management. Foods, 13(9), 1412. https://doi.org/10.3390/foods13091412

32. Faye, B., & Konuspayeva, G. (2012). The sustainability challenge to the dairy sector–The growing importance of non-cattle milk production worldwide. International Dairy Journal, 24(2), 50–56. https://doi.org/10.1016/j.idairyj.2011.12.011

33. Cabiddu, A., Addis, M., Pinna, G., Decandia, M., & Molle, G. (2021). Seasonal variation of milk fatty acid profile in sheep and goats under pastoral systems. Animals, 11(1), 1–19. https://doi.org/10.3390/ani11010206

34. Chilliard, Y., Ferlay, A., & Doreau, M. (2001). Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock production science, 70(1-2), 31-48. https://doi.org/10.1016/S0301-6226(01)00196-8

35. Minjigdorj, N., Haug, A., & Austbø, D. (2012). Fatty acid composition of Mongolian mare milk. Acta Agriculturae Scandinavica, Section A–Animal Science, 62(2), 73-80. https://doi.org/10.1080/09064702.2012.721000

36. Kouba, M., & Mourot, J. (2011). A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie, 93(1), 13-17. https://doi.org/10.1016/j.biochi.2010.02.027

37. Markiewicz-Kęszycka, M., Czyżak-Runowska, G., Lipińska, P., & Wójtowski, J. (2013). Fatty acid profile of milk-a review. Bull. Vet. Inst. Pulawy, 57(2), 135-139. https://doi.org/10.2478/bvip-2013-0026

38. Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21(6), 495–505. https://doi.org/10.1080/07315724.2002.10719248

39. Simopoulos, A. P. (2004). Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food reviews international, 20(1), 77-90. https://doi.org/10.1081/FRI-120028831

40. Polidori, P., Cammertoni, N., Santini, G., Klimanova, Y., Zhang, J. J., & Vincenzetti, S. (2021). Nutritional properties of camelids and equids fresh and fermented milk. Dairy, 2(2), 288-302. https://doi.org/10.3390/dairy2020024

41. Barłowska, J., Polak, G., Janczarek, I., & Tkaczyk, E. (2023). The influence of selected factors on the nutritional value of the milk of cold-blooded mares: The example of the Sokólski breed. Animals, 13(7), 1152. https://doi.org/10.3390/ani13071152

42. Gebreyowhans, S., Lu, J., Zhang, S., Pang, X., & Lv, J. (2019). Dietary enrichment of milk and dairy products with n 3 fatty acids: A review. International Dairy Journal, 95, 82–96. https://doi.org/10.1016/j.idairyj.2019.05.011

43. Boranbayeva, T., Karahan, A. G., Toishimanov, M., Zhalelov, D., & Bolat, A. (2025). Effects of seasonal and regional variations on the bacterial and fungal biodiversity of mares’ milk and koumiss in the Almaty and Zhambyl regions of Kazakhstan. International Dairy Journal, 145, 106331. https://doi.org/10.1016/j.idairyj.2025.106331

44. Jastrzębska, E., Wadas, E., Daszkiewicz, T., & Pietrzak-Fiećko, R. (2017). Nutritional value and health-promoting properties of mare’s milk - a review. Czech Journal of Animal Science, 62(12), 511–518. https://doi.org/10.17221/61/2016-cjas

45. Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985–992. https://doi.org/10.1016/0140-6736(91)91846-M

Downloads

Published

2025-08-26

Issue

Section

Articles

How to Cite

Comparative evaluation of quality composition, fatty acid profiles, and seasonal variability of kumys from mare’s milk. (2025). Scifood, 19(1), 437-450. https://doi.org/10.5219/scifood.52

Most read articles by the same author(s)

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.