Physico-chemical properties and micronutrient profile of functional chocolate with mare's milk powder and resveratrol
DOI:
https://doi.org/10.5219/scifood.4Keywords:
functional product, mare's milk powder, resveratrol, healthy diet, micronutrient profile, nutritional preventionAbstract
Cardiovascular diseases (CVDs) represent one of the most severe healthcare challenges for many countries, accounting for one-third of all deaths worldwide. One significant risk factor contributing to the increase in CVD prevalence is the disruption of dietary patterns, characterised by a deficiency of essential macro- and micronutrients in the population's diet. In this context, a particularly relevant direction in food biotechnology and preventive medicine is the nutritional prevention of CVD by developing new functional food products with pronounced health-promoting and cardioprotective properties. Mare's milk and resveratrol have a balanced chemical composition and can be utilised to prevent many chronic non-communicable diseases, including CVD. This study aims to develop functional milk chocolate enriched with dried mare's milk and resveratrol and determine its physicochemical properties and micronutrient profile. The replacement of cow's milk in chocolate with dried mare's milk and fortification using resveratrol powder resulted in significant changes in the product's properties, which varied depending on the quantity of added functional ingredients. These include the mass content of B vitamins, vitamins A and E, calcium, magnesium, essential amino acids, and polyunsaturated fatty acids. Sensory analysis revealed changes in the product's organoleptic properties following incorporating these functional components. Thus, adding 20% dried mare's milk and 0.10% resveratrol can enhance the biological value and improve the sensory qualities of the chocolate products.References
1. Cao, B., Bray, F., Ilbawi, A., & Soerjomataram, I. (2018). Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: a global analysis of the Sustainable Development Goal health target. In The Lancet Global Health (Vol. 6, Issue 12, pp. e1288–e1296). Elsevier BV. https://doi.org/10.1016/s2214-109x(18)30411-x
2. Budreviciute, A., Damiati, S., Sabir, D. K., Onder, K., Schuller-Goetzburg, P., Plakys, G., Katileviciute, A., Khoja, S., & Kodzius, R. (2020). Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. In Frontiers in Public Health (Vol. 8). Frontiers Media SA. https://doi.org/10.3389/fpubh.2020.574111
3. Ruan, Y., Guo, Y., Zheng, Y., Huang, Z., Sun, S., Kowal, P., Shi, Y., & Wu, F. (2018). Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: results from SAGE Wave 1. In BMC Public Health (Vol. 18, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/s12889-018-5653-9
4. Alissa, E. M., & Ferns, G. A. (2012). Functional Foods and Nutraceuticals in the Primary Prevention of Cardiovascular Diseases. In Journal of Nutrition and Metabolism (Vol. 2012, pp. 1–16). Hindawi Limited. https://doi.org/10.1155/2012/569486
5. Hashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., & Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. In Food Science and Human Wellness (Vol. 4, Issue 1, pp. 1–8). Tsinghua University Press. https://doi.org/10.1016/j.fshw.2015.03.002
6. Jensen, C., Fang, K., Grech, A., & Rangan, A. (2021). Trends in Sales and Industry Perspectives of Package Sizes of Carbonates and Confectionery Products. In Foods (Vol. 10, Issue 5, p. 1071). MDPI AG. https://doi.org/10.3390/foods10051071
7. Mellor, D. D., Amund, D., Georgousopoulou, E., & Naumovski, N. (2017). Sugar and cocoa: sweet synergy or bitter antagonisms. Formulating cocoa and chocolate products for health: a narrative review. In International Journal of Food Science & Technology (Vol. 53, Issue 1, pp. 33–42). Wiley. https://doi.org/10.1111/ijfs.13651
8. Kushugulova, A., Kozhakhmetov, S., Sattybayeva, R., Nurgozhina, A., Ziyat, A., Yadav, H., & Marotta, F. (2018). Mare’s milk as a prospective functional product. In Functional Foods in Health and Disease (Vol. 8, Issue 11, p. 548). Functional Food Center. https://doi.org/10.31989/ffhd.v8i11.528
9. Cieslak, J., Wodas, L., Borowska, A., Sadoch, J., Pawlak, P., Puppel, K., Kuczynska, B., & Mackowski, M. (2016). Variability of lysozyme and lactoferrin bioactive protein concentrations in equine milk in relation to LYZ and LTF gene polymorphisms and expression. In Journal of the Science of Food and Agriculture (Vol. 97, Issue 7, pp. 2174–2181). Wiley. https://doi.org/10.1002/jsfa.8026
10. Gregić, M., Mijić, P., Baban, M., Aladrović, J., Pađen, L., Gantner, V., & Bobić, T. (2022). Changes in the Fatty Acid Composition of Milk of Lipizzaner Mares during the Lactation Period. In Metabolites (Vol. 12, Issue 6, p. 506). MDPI AG. https://doi.org/10.3390/metabo12060506
11. Musaev, A., Sadykova, S., Anambayeva, A., Saizhanova, M., Balkanay, G., & Kolbaev, M. (2021). Mare’s Milk: Composition, its Properties and Uses in Medicine. Archives of Razi Institute, Online First. https://doi.org/10.22092/ari.2021.355834.1725
12. Houacine, C., Khan, I., & Yousaf, S. S. (2021). Potential Cardio-Protective Agents: A Resveratrol Review (2000-2019). In Current Pharmaceutical Design (Vol. 27, Issue 26, pp. 2943–2955). Bentham Science Publishers Ltd. https://doi.org/10.2174/1381612826666200909125354
13. Mahal, H. S., & Mukherjee, T. (2006). Scavenging of reactive oxygen radicals by resveratrol: antioxidant effect. In Research on Chemical Intermediates (Vol. 32, Issue 1, pp. 59–71). Springer Science and Business Media LLC. https://doi.org/10.1163/156856706775012941
14. De Sá Coutinho, D., Pacheco, M. T., Frozza, R. L., & Bernardi, A. (2018). Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. In International Journal of Molecular Sciences (Vol. 19, Issue 6, p. 1812). MDPI AG. https://doi.org/10.3390/ijms19061812
15. Wu, J. M., & Hsieh, T. (2011). Resveratrol: a cardioprotective substance. In Annals of the New York Academy of Sciences (Vol. 1215, Issue 1, pp. 16–21). Wiley. https://doi.org/10.1111/j.1749-6632.2010.05854.x
16. Nakata, R., Takahashi, S., & Inoue, H. (2012). Recent Advances in the Study on Resveratrol. In Biological and Pharmaceutical Bulletin (Vol. 35, Issue 3, pp. 273–279). Pharmaceutical Society of Japan. https://doi.org/10.1248/bpb.35.273
17. Wang, L., Xu, M., Liu, C., Wang, J., Xi, H., Wu, B., Loescher, W., Duan, W., Fan, P., & Li, S. (2013). Resveratrols in Grape Berry Skins and Leaves in Vitis Germplasm. In M. L. Alvarez (Ed.), PLoS ONE (Vol. 8, Issue 4, p. e61642). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0061642
18. Qiu, C., Wang, Y., Teng, Y., & Zhao, M. (2017). Influence of glycosylation of deamidated wheat gliadin on its interaction mechanism with resveratrol. In Food Chemistry (Vol. 221, pp. 431–438). Elsevier BV. https://doi.org/10.1016/j.foodchem.2016.10.098
19. Delpino, F. M., Figueiredo, L. M., Caputo, E. L., Mintem, G. C., & Gigante, D. P. (2021). What is the effect of resveratrol on obesity? A systematic review and meta-analysis. In Clinical Nutrition ESPEN (Vol. 41, pp. 59–67). Elsevier BV. https://doi.org/10.1016/j.clnesp.2020.11.025
20. Öztürk, E., Arslan, A. K. K., Yerer, M. B., & Bishayee, A. (2017). Resveratrol and diabetes: A critical review of clinical studies. In Biomedicine & Pharmacotherapy (Vol. 95, pp. 230–234). Elsevier BV. https://doi.org/10.1016/j.biopha.2017.08.070
21. Raj, P., Thandapilly, S. J., Wigle, J., Zieroth, S., & Netticadan, T. (2021). A Comprehensive Analysis of the Efficacy of Resveratrol in Atherosclerotic Cardiovascular Disease, Myocardial Infarction and Heart Failure. In Molecules (Vol. 26, Issue 21, p. 6600). MDPI AG. https://doi.org/10.3390/molecules26216600
22. Zhang, L.-X., Li, C.-X., Kakar, M. U., Khan, M. S., Wu, P.-F., Amir, R. M., Dai, D.-F., Naveed, M., Li, Q.-Y., Saeed, M., Shen, J.-Q., Rajput, S. A., & Li, J.-H. (2021). Resveratrol (RV): A pharmacological review and call for further research. In Biomedicine & Pharmacotherapy (Vol. 143, p. 112164). Elsevier BV. https://doi.org/10.1016/j.biopha.2021.112164
23. AOAC. Official methods of analysis, 16th ed.; Association of official analytical chemists: Washington, DC, USA, 1995.
24. Albawarshi, Y., Amr, A., Al-Ismail, K., Shahein, M., Majdalawi, M., Saleh, M., Khamaiseh, A., & El-Eswed, B. (2022). Simultaneous Determination of B1, B2, B3, B6, B9, and B12 Vitamins in Premix and Fortified Flour Using HPLC/DAD: Effect of Detection Wavelength. In M. Faisal Manzoor (Ed.), Journal of Food Quality (Vol. 2022, pp. 1–11). Hindawi Limited. https://doi.org/10.1155/2022/9065154
25. El Hosry, L., Sok, N., Richa, R., Al Mashtoub, L., Cayot, P., & Bou-Maroun, E. (2023). Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review. In Foods (Vol. 12, Issue 4, p. 895). MDPI AG. https://doi.org/10.3390/foods12040895
26. Sarwar, G., & Botting, H. G. (1993). Evaluation of liquid chromatographic analysis of nutritionally important amino acids in food and physiological samples. In Journal of Chromatography B: Biomedical Sciences and Applications (Vol. 615, Issue 1, pp. 1–22). Elsevier BV. https://doi.org/10.1016/0378-4347(93)80286-d
27. Kang, J. X., & Wang, J. (2005). A simplified method for analysis of polyunsaturated fatty acids. In BMC Biochemistry (Vol. 6, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1186/1471-2091-6-5
28. Phillips, S. M. (2006). Dietary protein for athletes: from requirements to metabolic advantage. In Applied Physiology, Nutrition, and Metabolism (Vol. 31, Issue 6, pp. 647–654). Canadian Science Publishing. https://doi.org/10.1139/h06-035
29. Nieman, K. M., Anderson, B. D., & Cifelli, C. J. (2020). The Effects of Dairy Product and Dairy Protein Intake on Inflammation: A Systematic Review of the Literature. In Journal of the American College of Nutrition (Vol. 40, Issue 6, pp. 571–582). Informa UK Limited. https://doi.org/10.1080/07315724.2020.1800532
30. Martínez-Maqueda, D., Miralles, B., Recio, I., & Hernández-Ledesma, B. (2012). Antihypertensive peptides from food proteins: a review. In Food & Function (Vol. 3, Issue 4, p. 350). Royal Society of Chemistry (RSC). https://doi.org/10.1039/c2fo10192k
31. Sabbione, A. C., Scilingo, A., & Añón, M. C. (2015). Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. In LWT - Food Science and Technology (Vol. 60, Issue 1, pp. 171–177). Elsevier BV. https://doi.org/10.1016/j.lwt.2014.07.015
32. Li, J., Bollati, C., d’Adduzio, L., Fanzaga, M., Cruz-Chamorro, I., Arnoldi, A., Sirtori, C. R., & Lammi, C. (2024). Food-derived peptides with hypocholesterolemic activity: Production, transepithelial transport and cellular mechanisms. In Trends in Food Science & Technology (Vol. 143, p. 104279). Elsevier BV. https://doi.org/10.1016/j.tifs.2023.104279
33. Martuzzi, F., & Doreau, M. (2006). Mare milk composition: recent findings about protein fractions and mineral content. In Nutrition and feeding of the broodmare (pp. 65–76). Brill | Wageningen Academic. https://doi.org/10.3920/9789086865840_007
34. Song, J. J., Wang, Q., Du, M., Ji, X. M., & Mao, X. Y. (2017). Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates. In Journal of Dairy Science (Vol. 100, Issue 9, pp. 6885–6894). American Dairy Science Association. https://doi.org/10.3168/jds.2016-11828
35. Mazhitova, A. T., & Kulmyrzaev, A. A. (2016). Determination of amino acid profile of mare milk produced in the highlands of the Kyrgyz Republic during the milking season. In Journal of Dairy Science (Vol. 99, Issue 4, pp. 2480–2487). American Dairy Science Association. https://doi.org/10.3168/jds.2015-9717
36. Adil, S., Mehta, B. M., & Jana, A. H. (2021). Chemistry, Nutritional Properties and Application of Mare’s Milk: A Review. In Agricultural Reviews (Issue Of). Agricultural Research Communication Center. https://doi.org/10.18805/ag.r-2232
37. Barter, P., Gotto, A. M., LaRosa, J. C., Maroni, J., Szarek, M., Grundy, S. M., Kastelein, J. J. P., Bittner, V., & Fruchart, J.-C. (2007). HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events. In New England Journal of Medicine (Vol. 357, Issue 13, pp. 1301–1310). Massachusetts Medical Society. https://doi.org/10.1056/nejmoa064278
38. Drake, M. A. (2007). Invited Review: Sensory Analysis of Dairy Foods. In Journal of Dairy Science (Vol. 90, Issue 11, pp. 4925–4937). American Dairy Science Association. https://doi.org/10.3168/jds.2007-0332
39. Lemarcq, V., Van de Walle, D., Monterde, V., Sioriki, E., & Dewettinck, K. (2021). Assessing the flavor of cocoa liquor and chocolate through instrumental and sensory analysis: a critical review. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 20, pp. 5523–5539). Informa UK Limited. https://doi.org/10.1080/10408398.2021.1887076
40. Godswill, A. G., Somtochukwu, I. V., Ikechukwu, A. O., & Kate, E. C. (2020). Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. In International Journal of Food Sciences (Vol. 3, Issue 1, pp. 1–32). IPR Journals and Books (International Peer Reviewed Journals and Books). https://doi.org/10.47604/ijf.1024
41. Kumar, R., Malik, S., Tiwari, R., Zhautivova, S. B., Rakhimovna, A. H., Raj, T., & Kumar, P. (2021). Pathophysiology of Cardiovascular Diseases and the Role of Vitamins, and Herbal Extracts in the Reduction of Cardiovascular Risks. In Cardiovascular & Hematological Agents in Medicinal Chemistry (Vol. 19, Issue 2, pp. 175–186). Bentham Science Publishers Ltd. https://doi.org/10.2174/1871525718666201217102638
42. Honarbakhsh, S., & Schachter, M. (2008). Vitamins and cardiovascular disease. In British Journal of Nutrition (Vol. 101, Issue 8, pp. 1113–1131). Cambridge University Press (CUP). https://doi.org/10.1017/s000711450809123x
43. Cinquanta, L., Di Cesare, C., Manoni, R., Piano, A., Roberti, P., & Salvatori, G. (2016). Mineral essential elements for nutrition in different chocolate products. In International Journal of Food Sciences and Nutrition (Vol. 67, Issue 7, pp. 773–778). Informa UK Limited. https://doi.org/10.1080/09637486.2016.1199664
44. Wu, S., Jiang, X., Liu, Y., Chen, L., & Tao, J. (2016). Effects and mechanisms of a new multivitamin on chronic metabolic syndromes and aging. In African Journal of Traditional, Complementary and Alternative medicines (Vol. 14, Issue 1, pp. 52–61). African Traditional Herbal Medicine Supporters Initiative (ATHMSI). https://doi.org/10.21010/ajtcam.v14i1.7
45. Ames, B. N., & Wakimoto, P. (2002). Are vitamin and mineral deficiencies a major cancer risk? In Nature Reviews Cancer (Vol. 2, Issue 9, pp. 694–704). Springer Science and Business Media LLC. https://doi.org/10.1038/nrc886
46. Rautiainen, S., Rist, P. M., Glynn, R. J., Buring, J. E., Gaziano, J. M., & Sesso, H. D. (2016). Multivitamin Use and the Risk of Cardiovascular Disease in Men. In The Journal of Nutrition (Vol. 146, Issue 6, pp. 1235–1240). Elsevier BV. https://doi.org/10.3945/jn.115.227884
47. Brestenský, M., Nitrayová, S., Patráš, P., Heger, J., & Nitray, J. (2015). Branched chain amino acids and their importance in nutrition. In Journal of microbiology, biotechnology and food sciences (Vol. 5, Issue 2, pp. 197–202). Slovak University of Agriculture in Nitra. https://doi.org/10.15414/jmbfs.2015.5.2.197-202
48. Hewton, K. G., Johal, A. S., & Parker, S. J. (2021). Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. In Metabolites (Vol. 11, Issue 2, p. 112). MDPI AG. https://doi.org/10.3390/metabo11020112
49. Martínez Sanz, J. M., Norte Navarro, A., Salinas García, E., & Sospedra López, I. (2019). An Overview on Essential Amino Acids and Branched Chain Amino Acids. In Nutrition and Enhanced Sports Performance (pp. 509–519). Elsevier. https://doi.org/10.1016/b978-0-12-813922-6.00043-6
50. Dąbrowski, G., & Konopka, I. (2022). Update on food sources and biological activity of odd-chain, branched and cyclic fatty acids –– A review. In Trends in Food Science & Technology (Vol. 119, pp. 514–529). Elsevier BV. https://doi.org/10.1016/j.tifs.2021.12.019
51. Calder, P. C. (2015). Functional Roles of Fatty Acids and Their Effects on Human Health. In Journal of Parenteral and Enteral Nutrition (Vol. 39, Issue 1S). Wiley. https://doi.org/10.1177/0148607115595980
52. De Carvalho, C., & Caramujo, M. (2018). The Various Roles of Fatty Acids. In Molecules (Vol. 23, Issue 10, p. 2583). MDPI AG. https://doi.org/10.3390/molecules23102583
53. Navrátilová, P. (2018). Content of nutritionally important components in mare milk fat. In Mljekarstvo (pp. 282–294). Croatian Dairy Union. https://doi.org/10.15567/mljekarstvo.2018.0404
54. Borchers, A. T., Keen, C. L., Hannum, S. M., & Gershwin, M. E. (2000). Cocoa and Chocolate: Composition, Bioavailability, and Health Implications. In Journal of Medicinal Food (Vol. 3, Issue 2, pp. 77–105). Mary Ann Liebert Inc. https://doi.org/10.1089/109662000416285
55. Oppedisano, F., Macrì, R., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., Bosco, F., Nucera, S., Caterina Zito, M., Guarnieri, L., Scarano, F., Nicita, C., Coppoletta, A. R., Ruga, S., Scicchitano, M., Mollace, R., Palma, E., & Mollace, V. (2020). The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. In Biomedicines (Vol. 8, Issue 9, p. 306). MDPI AG. https://doi.org/10.3390/biomedicines8090306
56. Lisitsyn, A. B., Chernukha, I. M., & Lunina, O. I. (2017). Fatty acid composition of meat from various animal species and the role of technological factors in trans- isomerization of fatty acids. In Foods and Raw materials (Vol. 5, Issue 2, pp. 54–61). Kemerovo State University. https://doi.org/10.21603/2308-4057-2017-2-54-61
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Galiya Smagul, Dilyar Tuigunov, Yuriy Sinyavskiy, Tatiana Savenkova, Sabyrkhan Barmak (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.