Comparative assessment of the quality of meat and lard products of three-way crossbred pigs

Authors

  • Oleksandr Tsereniuk Institute of the Breeding and Agro-industrial Production of the National Academy of Agrarian Sciences of Ukraine, Director, Shvedska Mohyla str., 1, 36013, Poltava, Ukraine, Теl.: +380667272493 Author https://orcid.org/0000-0003-4797-9685
  • Oleksandr Akimov National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Laboratory of swine disease research, Hryhoriia Skovorody str., 83, 61023, Kharkiv, Ukraine, Теl.: +380638427962 Author https://orcid.org/0000-0002-1938-0459
  • Anatoliy Paliy National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Director, Hryhoriia Skovorody str., 83, 61023, Kharkiv, Ukraine, Теl.: +380662253434 Author https://orcid.org/0000-0002-9193-3548
  • Ivan Buhai Institute of the Breeding and Agro-industrial Production of the National Academy of Agrarian Sciences of Ukraine, post-graduate, Shvedska Mohyla str., 1, 36013, Poltava, Ukraine, Теl.: +380674708246 Author https://orcid.org/0009-0001-1476-0903
  • Kateryna Rodionova Odesa State Agrarian University, Faculty of Veterinary medicine, Department of infectious pathology, biosafety and veterinary-sanitary inspection named after professor V.Ya. Atamas, Panteleimonovskaya str., 13, 65012, Odesa, Ukraine, Tel. +380662486856 Author https://orcid.org/0000-0002-7245-4525
  • Mykola Balta Odesa State Agrarian University, Faculty of Veterinary madicine, Department of infectious pathology, biosafety and veterinary-sanitary inspection named after professor V.Ya. Atamas, Panteleimonovskaya str., 13, 65012, Odesa, Ukraine, Tel. +380679675712 Author https://orcid.org/0009-0001-7703-1812
  • Olena Pavlichenko State Biotechnological University, Department of Sanitation, Hygiene and Forensic Veterinary Medicine, Alchevskyh str., 44, 61002, Kharkiv, Ukraine, Tel. +380500263530 Author https://orcid.org/0000-0002-6577-6577
  • Mariia Кhimych Odesa State Agrarian University, Faculty of Veterinary madicine, Department of infectious pathology, biosafety and veterinary-sanitary inspection named after professor V.Ya. Atamas, Panteleimonovskaya Str., 13, 65012, Odesa, Ukraine, Тel.: 067-799-21-13 Author https://orcid.org/0000-0003-2646-3196

DOI:

https://doi.org/10.5219/scifood.30

Keywords:

pork, meat quality, longissimus dorsi muscle, back fat, crossbred

Abstract

A comparative assessment analysis of meat and back fat quality of crossbred boars of Duroc (D) and Pietrain (P) breeds, mated with sows obtained from direct and back crossing is presented in the article: the combination of Large White (LW) gilts and Landrace (L) boars and the combination of Landrace (L) gilts and Large White (LW) breed boars. No significant differences were found in the meat active acidity of slaughtered animals in different groups. This indicator was within the 5.69-5.79 unit range and corresponded to the regulatory values. The difference was noted between various groups in the tenderness index, which is connected with using boars of different breeds as the final paternal form. Thus, when using D boars, tenderness values varied from 7.92 to 9.75 sec., while when using P boars, the values of this indicator were within 11.40-11.71 sec. Moisture-retention power indicators were within the normal range for all groups of animals. The animals with ½ D genotype and young stock obtained from the combination of (LW×L) sows with P boars were characterized by insignificant differences in this indicator. Instead, the combination (L×LW)×P was characterized by the lowest moisture-retention power values, yielding to the other groups. In comparison with the (L×LW)×D group, this difference was 5.27% and had a significant value (p < 0.05). The combination of (L×LW)×P was characterized by the highest values of cooking loss, surpassing those of the other groups. When compared with the (L×LW)×D group, this difference had a significant value of 3.02% (p < 0.05). The total moisture content in the meat was 73.55 - 74.97%. Regarding ash content, meat samples from pigs with the ½ D genotype, compared with young stock of the ½ P genotype, had lower values of this indicator. The highest values of protein content were in meat samples obtained from young pigs with ½ D genotype. Fat content in the meat of the experimental groups was within 2.14-3.22%, corresponding to physiological standards. According to the results of the tasting analysis, the samples of the longissimus dorsi muscle, back fat, and broth received high appraisal. However, significant differences between the groups were not revealed.

Metrics

Metrics Loading ...

References

1. Zhukorskyi, О. М., Tsereniuk, О. М., Vashchenko, P. А., Khokhlov, A. M., Chereuta, Y. V., Akimov, О. V., & Kryhina, N. V. (2022). The effect of the ryanodine receptor gene on the reproductive traits of Welsh sows. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 4, pp. 367–372). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022248

2. Michalchenko, S. A., Korkh, I. V., Paliy, A. P., Boiko, N. V., Kovalenko, L. V., Pavlichenko, O. V., Vyrvykyshka, S. M., & Morozov, M. G. (2024). Amino acid composition of beef depending on the breed and age of dairy bulls. In International Journal of Agricultural Technology (Vol. 20, Issue 6, pp. 2405–2422). Association of Agricultural Technology in Southeast Asia (AATSEA) ISSN 2630-0192 (Online)

3. Statistical Yearbook of Ukraine for 2022. (2023). State Statistics Service of Ukraine. Statistical collection. Agriculture of Ukraine. Kyiv (p. 162). Available at: https://www.ukrstat.gov.ua/druk/publicat/kat_u/2023/zb/09/S_gos_22.pdf

4. World Health Organization. One Health. Available et: https://www.who.int/news-room/fact-sheets/detail/one-health

5. Buzun, A. I., Stegniy, B. T., Paliy, A. P., Spivak, M. Ya., Bogach, M. V., Stegniy, M. Yu., Kuzminov, A. V., & Pavlichenko, O. V. (2023). Experimental epizotology of low virulent variants of African swine fever virus. In Microbiological Journal (Vol. 3, pp. 71–87). Zabolotny Institute of Microbiology and Virology, NAS of Ukraine https://doi.org/10.15407/microbiolj85.03.070

6. Ponomarenko, G. V., Kovalenko, V. L., Balatskiy, Y. O., Ponomarenko, O. V., Paliy, A. P., & Shulyak, S. V. (2021). Bactericidal efficiency of preparation based on essential oils used in aerosol disinfection in the presence of poultry. In Regulatory Mechanisms in Biosystems (Vol. 12, Issue 4, pp. 635–641). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022187

7. Rodionova, K., Paliy, A., & Кhimych, M. (2021). Veterinary and sanitary assessment and disinfection of refrigerator chambers of meat processing enterprises. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 15, рр. 616–626). HACCP Consulting https://doi.org/10.5219/1628

8. Zavgorodnii, A. I., Pozmogova, S. A., Kalashnyk, M. V., Paliy, A. P., Plyuta, L. V., & Palii, A. P. (2021). Etiological factors in triggering non-specific allergic reactions to tuberculin in cattle. In Regulatory Mechanisms in Biosystems (Vol. 12, Issue 2, pp. 228-233). Oles Honchar Dnipropetrovsk National University. https://doi.org/10.15421/022131

9. Aliiev, E., Paliy, A., Kis, V., Paliy, A., Petrov, R., Plyuta, L., Chekan, O., Musiienko, O., Ukhovskyi, V., & Korniienko, L. (2022). Establishment of the influence of technical and technological parameters of dairy and milking equipment on the efficiency of machining. Eastern-European Journal of Enterprise Technologies (Vol. 1, Issue 1(115), pp. 44-55). Ukrainian State University of Railway Transport https://doi.org/10.15587/1729-4061.2022.251172

10. Duong, C., Sung, B., Lee, S., & Easton, J. (2022). Assessing Australian consumer preferences for fresh pork meat attributes: A best-worst approach on 46 attributes. In Meat Science (Vol. 193). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2022.108954

11. Mörlein, D., Link, G., Werner, C., & Wicke, M. (2007). Suitability of three commercially produced pig breeds in Germany for a meat quality program with emphasis on drip loss and eating quality. In Meat Science (Vol. 77, Issue 4, pp. 504–511). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2007.04.030

12. Wood, J. D., Enser, M. B., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. In Meat Science (Vol. 78, Issue 4, pp. 343 – 358). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2007.07.019

13. Belal, S. A., & Jung, J.-H. (2024). The results of meat quality traits and sensory characteristics according to the concentration of androstenone in uncastrated pigs. In J Anim Sci Technol (Vol. 66, Issue 2, pp. 387-397). Korean Society of Animal Husbandry and Technology https://doi.org/10.5187/jast.2024.e34

14. Choe, J., Moyo, K. M., Park, K., Jeong, J., Kim, H., Ryu, Y., Kim, J., Kim, J. M., Lee, S., & Go, G. W. (2017). Meat Quality Traits of Pigs Finished on Food Waste. In Korean Journal for Food Science of Animal Resources (Vol. 37, Issue 5, pp. 690–697). Korea Institute of Science and Technology Information https://doi.org/10.5851/kosfa.2017.37.5.690

15. Olsson, V., & Pickova, J. (2005). The influence of production systems on meat quality, with emphasis on pork. Ambio: A Journal of the Human Environment (Vol. 34, Issue 4, pp. 338–343). https://doi.org/10.1579/0044-7447-34.4.338

16. Ba, H. V., Seo, H. W., Seong, P. N., Cho, S. H., Kang, S. M., Kim, Y. S., Moon. S. S., Choi, Y. M., & Kim, J. H. (2019). Live weights at slaughter significantly affect the meat quality and flavor components of pork meat. In Journal of Animal Science (Vol. 90, Issue 5, pp. 667–679). American Society for Animal Sciences https://doi.org/10.1111/asj.13187

17. Kolchyk, O., Illarionova, T., Buzun, A., Paliy, A., & Palii, A. (2022). Influence of probiotic microorganisms on microbial biofilms in feeds. In Scientific Horizons (Vol. 25, Issue 1, pp. 41-50). Polissia National University https://doi.org/10.48077/scihor.25(1).2022.41-50

18. Lebret, B., & Čandek-Potokar, M. (2022). Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. In Animal (Vol. 16, Supplement 1). By the BSAS, EAAP and INRAE consortium https://doi.org/10.1016/j.animal.2021.100402

19. Paliy, A., Michalchenko, S., Korkh, I., Rodionova, K., Tkachuk, S., Khimych, M., Dankevych, N., & Boiko, N. (2024). Formation of the biological value of beef protein depending on the age and breed of bulls. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, pp. 834-846). HACCP Consulting s.r.o. https://doi.org/10.5219/2003

20. Huang, Y., Zhou, L., Zhang, J., Liu, X., Zhang, Y., Cai, L., Zhang, W., Cui, L., Yang, J., Ji, J., Xiao, S., Ai, H., Chen, C., Ma, J., Yang, B., & Huang. L. (2020) A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. In Meat Science (Vol. 168). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2020.108182

21. Soladoye, O. P., Uttaro, B., Zawadski, S., Dugan, M. E. R., Gariépy, C., Aalhus, J. L., Shand, P., & Juárez, M. (2017). Compositional and dimensional factors influencing pork belly firmness. In Meat Sci (Vol. 129, pp. 54–61). https://doi.org/10.1016/j.meatsci.2017.02.006

22. Ngapo, T. M., Martin, J. F., & Dransfield, E. (2007). International preferences for pork appearance: II. Factors influencing consumer choice. In Food Qual Prefer (Vol. 18, Issue 1, pp. 139–51). European Society for Sensory Sciences https://doi.org/10.1016/j.foodqual.2005.09.007

23. Hoa, V. B., Seol, K. H., Seo, H. W., Seong, P. N., Kang, S. M., Kim, Y. S., Moon, S. S., Kim, J. H., & Cho, S. H. (2021). Meat quality characteristics of pork bellies in relation to fat level. In Anim Biosci (Vol. 34, Issue 10, pp. 1663–1673). Asian-Australasian Association of Animal Production Societies https://doi.org/10.5713/ab.20.0612

24. Fortin, A., Robertson, W. M., & Tong., A. K. W. (2005). The eating quality of Canadian pork and its relationship with intramuscular fat. In Meat Science (Vol. 69, Issue 2, pp. 297–305). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2004.07.011

25. Hong, J. S., Lee, G. I., Jin, X. H., & Kim, Y. Y. (2016). Effect of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs. In J Anim Sci Technol (Vol. 58, Issue 37). Korean Society of Animal Science and Technology https://doi.org/10.1186/s40781-016-0119-z

26. Malgwi, I. H., Halas, V., Grünvald, P., Schiavon, S., & Jócsák, I. (2022). Genes related to fat metabolism in pigs and intramuscular fat content of pork: A Focus on Nutrigenetics and Nutrigenomics. In Animals (Vol. 12, Issue 2). By the BSAS, EAAP and INRAE consortium https://doi.org/10.3390/ani12020150

27. Miar, Y., Plastow, G., Bruce, H., Moore, S., Manafiazar, G., Kemp, R., Charagu, P., Huisman, A., van Haandel, B., Zhang, C., McKay, R., & Wang, Z. (2014). Genetic and phenotypic correlations between performance traits with meat quality and carcass characteristics in commercial crossbred pigs. In PLoS One. (Vol. 9, Issue 10). PLOS https://doi.org/10.1371/journal.pone.0110105

28. Gao, K., Luo, Z., Han, S., Li, Z., Choe, H. M., Paek, H. J., Quan, B., Kang, J., & Yin, X. (2022). Analysis of meat color, meat tenderness and fatty acid composition of meat in second filial hybrid offspring of MSTN mutant pigs. In Meat Science (Vol. 193). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2022.108929

29. Saikia, A., Mejicanos, G., Rothy, J., Rajendiran, E., Yang, C., Nyachoti, M., Lei, H., Bergsma, R., Wu, Y., Jin, S., & Rodas-Gonzalez, A. (2024). Pork carcass composition, meat and belly qualities as influenced by feed efficiency selection in replacement boars from large white sire and dam lines. In Meat Science (Vol. 210). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2023.109423

30. Pandey, S., Kim, S., Kim, E. S., Keum, G. B., Doo, H., Kwak, J., Ryu, S., Choi, Y., Kang, J., Kim, H., Chae, Y., Seol, K. H., Kang, S. M., Kim, Y., Seong, P. N., Bae, I. S., Cho, S. H., Jung, S., & Kim, H. B. (2024). Exploring the multifaceted factors affecting pork meat quality. In J Anim Sci Technol (Vol. 66, Issue 5, pp. 863-875). Korean Society of Animal Husbandry and Technology https://doi.org/10.5187/jast.2024.e56

31. Zhukorskyi, O. M., Romanova, O. V., Pryima, S. V., & Basovskyi, D. M. (2023). State register of breeding subjects in animal husbandry for 2022. Kyiv. (Vol. II, p. 190).

32. Li, Y. X., Cabling, M. M., Kang, H. S., Kim, T. S., Yeom, S. C., Sohn, Y. G., Kim, S. H., Nam, K. C., & Seo, K. S. (2013). Comparison and Correlation Analysis of Different Swine Breeds Meat Quality. In Anim. Biosci (Vol. 26, Issue 7, pp. 905-910). https://doi.org/10.5713/ajas.2012.12622

33. Jeleníková, J., Pipek, P. & Miyahara, M. (2008). The effects of breed, sex, intramuscular fat and ultimate pH on pork tenderness. In European Food Research and Technology (Vol. 227, pp. 989–994). https://doi.org/10.1007/s00217-007-0810-x

34. Ruusunen, M., Puolanne, E., Sevon-Aimonen, M.-L., Partanen, K., Voutila, L., & Niemi, J. (2012). Carcass and meat quality traits of four different pig crosses. In Meat Science (Vol. 90, Issue 3, pp. 543–547). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2011.09.010

35. Choi, Y.-S., Lee, J.-K., Jung, J.-T., Jung, Y.-C., Jung, J.-H., Jung, M.-O., Choi, Y.-I., Jin, S.-K., & Choi, J.-S. (2016). Comparison of Meat Quality and Fatty Acid Composition of Longissimus Muscles from Purebred Pigs and Three-way Crossbred LYD Pigs. In Korean Journal for Food Science of Animal Resources. (Vol. 36, Issue 5, pp. 689-696). Korean Society for Food Science of Animal Resources https://doi.org/10.5851/kosfa.2016.36.5.689

36. Glinoubol, J., Jaturasitha, S., Mahinchaib, P., Wicke, M., & Kreuzer, M. (2015). Effects of Crossbreeding Thai Native or Duroc Pigs with Pietrain Pigs on Carcass and Meat Quality. In Agriculture and Agricultural Science Procedia (Vol. 5, pp. 133-138). Title discontinued as of 2017. Elsevier B.V. https://doi.org/10.1016/j.aaspro.2015.08.020

37. Ibatullin, I. I., Zhukorskyi, O. M., Bashchenko M. I., Kovtun, S. I., Kopylov, K. V. & al. (2017). Methodology and organization of scientific research in animal husbandry. Kyiv: Agrarian Science (p. 328).

38. DSTU 4718:2007. Pigs for slaughter. Specifications.

39. DSTU 7158:2010. Meat. Pork in whole and half-carcasses. Specifications.

40. DSTU 7992:2015. Meat and meat raw materials. A methods of selection of tests and organoleptic of an estimation of freshness.

41. Vlizlo, V. V. & al (2012). Laboratory methods of investigations in biology, livestock farming and veterinary medicine: Reference-book. Edited by V.V. Vlizlo. Lviv: SPOLOM (p. 767).

42. Yakubchak, O. M., Kravchuk, V. V., & Taran, T. V. (2013). Criteria of meat quality assessment. Kyiv: „Komprint“ (p. 121).

43. DSTU ISO 1443:2005. Meat and meat products. Determination of total fat content.

44. DSTU ISO 936:2008. Meat and meat products. Determination of total ash.

45. DSTU ISO 1442:2005. Meat and meat products. Determination of moisture content. (Reference method).

46. DSTU ISO 2917:2001. Meat and meat products. Measurement of pH. (Reference method).

47. DSTU ISO 937:2005. Meat and meat products. Determination of nitrogen content. (Reference method).

48. Hamm, R. & Grau, R. (1953). A simple method for determining the water binding in the muscle. Naturwissenschaften (Vol. 40, pp. 29-30). https://doi.org/10.1007/BF00595734

49. DSTU 4823.2:2007. Meat products. Organoleptic evaluation of quality characteristics. Part 2. General requirements.

50. Adzitey, F., & Nurul, H. (2011). Pale soft exudative (PSE) and dark firm dry (DFD) meats: causes and measures to reduce these incidences-a mini review. In International food research journal (Vol. 18, Issue 1, pp. 11-19). University of Putra Malaysia, MALAYSIA

51. Karamucki, T., & Jakubowska, M. (2020). Meat quality of crossbred pigs with various percentage of Pietrain and Duroc breeds (E and U classes in the European system). In Acta Sci. Pol. Zootechnica (Vol. 19, Issue 4, pp. 17-24). West Pomeranian University of Technology https://doi.org/10.21005/asp.2020.19.4.02

52. Kušec, G., Kralik, G., Petričević, A., Margeta, V., Gajčević, Z., Gutzmirtl, D., & Pešo, M. (2004). Differences in slaughtering characteristics between crossbred pigs with Pietrain and Duroc as terminal sire. In Acta agriculturae slovenica. Suplement (Vol. 1, pp. 121-127) University of Ljubljana https://doi.org/10.14720/aas-s.2004.1.19414

53. Warner, R. D., Wheeler, T. L., Ha, M., Li, X., Bekhit, A. E. D., Morton, J., Vaskoska R., Dunshea F. R., Purslow P., Liu R., & Zhang, W. (2022). Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies. In Meat science (Vol. 185). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2021.108657

54. Florowski, T., Pisula, A., Słowński, M., & Orzechowska, B. (2006). Processing suitability of pork from different breeds reared in Poland. In Acta Sci.Pol. Technol. Aliment. (Vol. 5, Issue 2, pp. 55–64). Poznań University of Life Sciences

55. Edwards, D. B., Bates, R. O., & Osburn, W. N. (2003). Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. In Journal of Animal Science (Vol. 81, Issue 8, pp. 1895–1899). American Society for Animal Sciences https://doi.org/10.2527/2003.8181895x

56. Kowalczyk, M., Kaliniak-Dziura, A., Prasow, M., Domaradzki, P., & Litwińczuk, A. (2022). Meat quality - Genetic background and methods of its analysis. In Czech Journal of Food Sciences (Vol. 40, Issue 1, pp. 15-25). Czech Academy of Agricultural Sciences https://doi.org/10.17221/255/2020-CJFS

57. Szmańko, T., Lesiów, T., & Górecka, J. (2021). The water-holding capacity of meat: A reference analytical method. In Food Chemistry (Vol. 357). Quadram Institute Bioscience https://doi.org/10.1016/j.foodchem.2021.129727

58. Ao, X., Meng, Q.W., & Kim, I.H. (2011). Effects of fermented red ginseng supplementation on growth performance, apparent nutrient digestibility, blood hematology and meat quality in finishing pigs. In Asian-Australas J Anim Sci (Vol. 24, Issue 4, pp. 525–531). Asian-Australasian Association of Animal Production Societies https://doi.org/10.5713/ajas.2011.10397

59. Garmatyk, K., Susol, R., Broshkov, M., Danchuk, O., Panikar, I., & Susol, L. (2020). Assessment of the quality of modern commercial pork products. In Food Science and Technology (Vol. 14, Issue 2, pp. 41–49). https://doi.org/10.15673/fst.v14i2.1718

60. Sośnicki, A., & Knap, P. W. (2024). Pig carcass composition and meat quality as delineated by breeding and genetics. In Encyclopedia of Meat Sciences. (pp. 495-506). Elsevier https://doi.org/10.1016/B978-0-323-85125-1.00088-0

61. Lawal, T. A., Todd, J. J., Witherspoon, J. W., Bönnemann, C. G., Dowling, J. J., Hamilton, S. L., Meilleur, K. G., & Dirksen, R. T. (2020). Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. In Skeletal muscle (Vol. 10). BioMed Central Ltd https://doi.org/10.1186/s13395-020-00243-4

62. Zequan, X., Yonggang, S., Heng, X., Yaodong, W., Xin, M., Dan, L., Li, Z., Tingting, D., & Zirong, W. (2022). Transcriptome-based analysis of early post-mortem formation of pale, soft, and exudative (PSE) pork. In Meat Science (Vol. 194). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2022.108962

63. de Oliveira, E. A., Dall’olio, S., Tassone, F., Arduini, A., & Nanni Costa, L. (2018). The effect of stress immediately prior to stunning on proglycogen, macroglycogen, lactate and meat quality traits in different pig breeds. In Italian Journal of Animal Science (Vol. 17, Issue 4, pp. 879–883). Animal Science and Production Association (ASPA) https://doi.org/10.1080/1828051X.2018.1449672

64. Gunenc, A. (2007). Evaluation of pork meat quality by using water holding capacity and vis-spectroscopy. McGill University (p. 86).

65. Lee, M. J., Cho, E. S., Choi, T. J., Kim, Y. M., Kim, Y. S., Jeong, Y. D., Kim, N. H., & Cho, K. H. (2018). Comparison of meat quality characteristics of Yorkshire, Duroc, Pietrain and Crossbred Pigs (Duroc × Pietrain). In J. of the Korea Academia-Industrial cooperation Society (Vol. 19, Issue 11, pp. 116–125). The Korea Academia-Industrial Cooperation Society https://doi.org/10.5762/KAIS.2018.19.11.116

66. Chaweewan, K., Thaenthanee, W., Chaosap, C., Limsupavanich, R., & Sitthigripong, R. (2015). Carcass and meat quality traits of pigs derived from Pietrain breed. “61st International Congress of Meat Science and Technology”. In Meat Sci. (Vol. 109).

67. Lebret, B., Ferchaud, S., Poissonnet, A., & Prunier, A. (2024). Organic rearing of non-castrated male pigs: welfare indicators, carcass traits, pork quality and boar taint in Duroc and Pietrain crossbreds. In Animal. (Vol. 18, Issue 10). By the BSAS, EAAP and INRAE consortium https://doi.org/10.1016/j.animal.2024.101316

68. Choi, J. S., Lee, H. J., Jin, S. K., Choi, Y. I., & Lee, J. J. (2014). Comparison of carcass characteristics and meat quality between Duroc and crossbred pigs. In Korean Society for Food Science of Animal Resources (Vol. 34, Issue 2, pp. 238-44). The Korea Academia-Industrial Cooperation Society https://doi.org/10.5851/kosfa.2014.34.2.238

69. Gao, G., Gao, N., Li, S., Kuang, W., Zhu, L., Jiang, W., Yu, W., Guo, J., Li, Z., Yang, C., & Zhao, Y. (2021). Genome-Wide Association Study of Meat Quality Traits in a Three-Way Crossbred Commercial Pig Population. In Frontiers in Genetics (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fgene.2021.614087

70. Nakev, J., & Popova, T. (2020). Quality of meat in purebred pigs involved in crossbreeding schemes. I. Chemical composition and quality characteristics of m. Longissimus thoracis. In Bulgarian Journal of Agricultural Science (Vol. 26, Issue 4, pp. 894–898). Agricultural Academy of Bulgaria

71. Grześkowiak, E., Borzuta, K., Strzelecki, J., & Lisiak, D. (2007). Effect of selected pigs genotypes on the texture of meat products. In Polish Journal of Food and Nutrition Sciences (Vol. 57, Issue 4A, pp. 207-212).

72. Kowalski, E., Aluwé, M., Vossen, E., Millet, S., & De Smet, S. (2018). Performance, carcassand meat quality differences between gilts and immunocastrates in diverse pig crossbreeds. Meet the Belgian Meat Researchers, BAMST Symposium, Abstracts (pp. 7–8). http://hdl.handle.net/1854/LU-8643541

73. Drewnowski, A. (2024). Perspective: The Place of Pork Meat in Sustainable Healthy Diets. In Advances in Nutrition (Vol. 15, Issue 5). https://doi.org/10.1016/j.advnut.2024.100213

74. Kim, J. A., Cho, E. S., Jeong, Y. D., Choi, Y. H., Kim, Y. S., Choi, J. w., Kim, J. S., Jang, A., Hong, J. K., & Sa, S. J. (2020). The effects of breed and gender on meat quality of Duroc, Pietrain, and their crossbred. In Journal of Animal Science and Technology (Vol. 62, Issue 3, pp. 409-419). American Society for Animal Sciences https://doi.org/10.5187/jast.2020.62.3.409

75. Alonso, V., Campo, M. del M., Español, S., Roncalés, P., & Beltrán, J. A. (2009). Effect of crossbreeding and gender on meat quality and fatty acid composition in pork. In Meat Science (Vol. 81, Issue 1, pp. 209-217). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2008.07.021

76. Vehovský, K., Zadinová, K., Stupka, R., Čítek, J., Lebedová, N., Okrouhlá, M., & Šprysl, M. (2018). Fatty acid composition in pork fat: De-novo synthesis, fatty acid sources and influencing factors – a review. In Agronomy Research (Vol. 16, Issue 5, pp. 2211-2228). Estonian University of Life Sciences https://doi.org/10.15159/AR.18.196

77. Brewer, M. S., Jensen, J., Sosnicki, A. A., Fields, B., Wilson, E., & Mc Keith, F. K. (2002). The effect of pig genetics on palatability, color and physical characteristics of fresh pork loin chops. In Meat Science (Vol. 61, Issue 3, pp. 249-256). Elsevier Ltd https://doi.org/10.1016/S0309-1740(01)00190-5

78. Kowalski, E., Vossen, E., Millet, S., Ampe, B., Callens, B., Van Royen, G., De Smet, S., & Aluwé, M. (2020). Performance and carcass, loin and ham quality in crossbreds from three terminal sire lines. In Meat Science (Vol. 167). Elsevier Ltd https://doi.org/10.1016/j.meatsci.2020.108158

79. Kim, Y. M., Choi, T. J., Cho., K. H., Cho, E. S., Lee. J. J., Chung, H. J., Baek., S. Y., & Jeong, Y. D. (2018). Effects of Sex and Breed on Meat Quality and Sensory Properties in Three-way Crossbred Pigs Sired by Duroc or by a Synthetic Breed Based on a Korean Native Breed. In Korean Society for Food Science of Animal Resources (Vol. 38, Issue 3, pp. 544-553). The Korean Society for Food Science of Animal Resources (KoSFA) https://doi.org/10.5851/kosfa.2018.38.3.544

80. Hoa, V. B., Seong, P. N., Cho, S. H., Kang, S. M., Kim, Y. S., Moon, S. S., Choi, Y. M., Kim, J. H., & Seol, K. H. (2019). Quality characteristics and flavor compounds of pork meat as a function of carcass quality grade. Asian-Australas. In J. Anim. Sci (Vol. 32, Issue 9, pp. 1448-1457). Asian-Australasian Association of Animal Production Societies (AAAP) https://doi.org/10.5713/ajas.18.0965

81. Law of Ukraine dated 21.02.2006 No. 3447-IV “About animal protection from cruel treatment”. Available at: https://zakon.rada.gov.ua/laws/show/3447-15#Text

82. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS № 123). Available at: https://rm.coe.int/168007a67b

83. Council Regulation (EC) № 1099/2009 of September 24 2009 on the protection of animals at the time of killing. Available at: http://data.europa.eu/eli/reg/2009/1099/2019-12-14

84. Ministry of Agrarian Policy and Food of Ukraine, Order dated 29.08.2022 No. 628 “About approving the Requirements to ensure animal well-being during slaughter and killing”. Available at: https://zakon.rada.gov.ua/laws/show/z1244-22#Text

Downloads

Published

2025-06-23

Issue

Section

Articles

How to Cite

Comparative assessment of the quality of meat and lard products of three-way crossbred pigs. (2025). Scifood, 19(1), 360-375. https://doi.org/10.5219/scifood.30

Similar Articles

11-16 of 16

You may also start an advanced similarity search for this article.