Physicochemical and sensory evaluation of pumpkin-based instant porridge with mocaf and cowpea flour

Authors

  • Agus Slamet Universitas Mercu Buana Yogyakarta, Faculty of Agroindustry, Department of Food Science and Technology, Jl. Wates Km 10 Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia Tel.: +628157917452 Author https://orcid.org/0000-0001-6229-7004
  • Bayu Kanetro Universitas Mercu Buana Yogyakarta, Faculty of Agroindustry, Department of Food Science and Technology, Jl. Wates Km 10 Yogyakarta, Daerah Istimewa Yogyakarta, Indonesia Tel.: +628133030568 Author https://orcid.org/0000-0002-4522-5575
  • Heni Purwaningsih Research Center for Food Technology and Processing, National Research and Innovation Agency, Jl. Jogja Wonosari Km 31.5, Gunungkidul, Yogyakarta, 55861, Indonesia Tel.: +6281392967330 Author https://orcid.org/0009-0006-4334-1018

DOI:

https://doi.org/10.5219/scifood.8

Keywords:

pumpkin, mocaf, instant porridge, antioxidant activity, β-carotene

Abstract

Functional food is currently a necessity along with the emergence of several degenerative diseases. These degenerative diseases, including coronary heart disease, diabetes, and hypercholesterolemia are the leading causes of death today. This study aims to produce instant porridge mixed with mocaf, pumpkin, and cowpea flour that is preferred by panelists and has the potential as a functional food. Instant porridge mixed with mocaf, pumpkin, and cowpea flour with variations; 1:1:1, 1:2:1, and 1:3:1. The drying temperature variations used were 130oC, 140oC, and150oC. The resulting instant porridge was tested for physical properties including: bulk density, yield, water and oil absorption, water absorption index, and colour. The level of preference was tested based on: colour, aroma, taste, viscosity, and overall preference. The instant porridge most preferred by panelists was analyzed chemically: water content, ash, protein, fat, carbohydrate by different, phenol, beta carotene, and antioxidant activity. Among all the samples tested in this study, the instant porridge that was most preferred by the panelists was the 1:3:1 variation at a drying temperature of 130oC, and has the potential to serve as a functional food.

References

1. De Groote, H., Munyua, B., Traore, D., Taylor, J. R. N., Ferruzzi, M., Ndiaye, C., Onyeoziri, I. O., & Hamaker, B. R. (2021). Measuring consumer acceptance of instant fortified millet products using affective tests and auctions in Dakar, Senegal. International Food and Agribusiness Management Review, 24(3), 499–522. Brill. https://doi.org/10.22434/IFAMR2020.0068

2. Asmira, S., Sayuti, K., Armenia, Syukri, D., & Azima, F. (2024). Functionality Screening of Instant Pumpkin Porridge with Cinnamon and Morel Berry Extract for Performance Enhancement of Diabetic Mice’s. Food Science and Technology (United States), 12(1), 15–23. Horizon Research Publishing Co., Ltd. https://doi.org/10.13189/fst.2024.120102

3. Nurrahman, Suyanto, A., Ayuningtyas, R. A., & Yonata, D. (2024). Physicochemical and Sensory Characteristics of Instant Pumpkin Soup with Variations of Porang Flour as a Thickener. Current Research in Nutrition and Food Science Journal, 12(2), 727–736. Enviro Research Publishers. https://doi.org/10.12944/crnfsj.12.2.19

4. Dessta, T. N., & Terefe, Z. K. (2024). Development of maize-based instant porridge flour formulated using sweet lupine, orange-fleshed sweet potato, and moringa leaf powder. Food Science and Nutrition. Wiley. https://doi.org/10.1002/fsn3.4483

5. Hagos, M., Redi-Abshiro, M., Chandravanshi, B. S., & Yaya, E. E. (2022). Development of Analytical Methods for Determination of β -Carotene in Pumpkin (Cucurbita maxima) Flesh, Peel, and Seed Powder Samples. International Journal of Analytical Chemistry, 2022. Hindawi Limited. https://doi.org/10.1155/2022/9363692

6. Kristianto, Y., Wignyanto, W., Argo, B. D., & Santoso, I. (2021). Antioxidant increase by response surface optimization and bayesian neural network modelling of pumpkin (Cucurbita moschata duch) freezing. Food Research, 5(3), 73–82. Rynnye Lyan Resources. https://doi.org/10.26656/fr.2017.5(3).598

7. Amin, M. Z., Islam, T., Uddin, M. R., Uddin, M. J., Rahman, M. M., & Satter, M. A. (2019). Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon, 5(9). Elsevier BV. https://doi.org/10.1016/j.heliyon.2019.e02462

8. Mustika, A. R., & Kartika, W. D. (2020). Formulation of yellow pumpkin cookies with mocaf (Modified cassava flour) flour addition as a snack for the obese community. Food Research, 4, 109–113. Rynnye Lyan Resources. https://doi.org/10.26656/fr.2017.4(S3).S02

9. Ratnawati, L., Desnilasari, D., Kumalasari, R., & Surahman, D. N. (2020). Characterization of modified cassava flour (Mocaf)-based biscuits substituted with soybean flour at varying concentrations and particle sizes. Food Research, 4(3), 645–651. Rynnye Lyan Resources. https://doi.org/10.26656/fr.2017.4(3).282

10. Afifah, N., & Ratnawati, L. (2017). Quality assessment of dry noodles made from blend of mocaf flour, rice flour and corn flour. IOP Conference Series: Earth and Environmental Science, 101(1). IOP Publishing. https://doi.org/10.1088/1755-1315/101/1/012021

11. Mahmudah, N. A., Mardiana, N. A., Putra, A. W., Purnomo, P., Widigdyo, A., & Kurniawan, D. (2024). Quality characteristics of modified cassava flour (mocaf) cookies incorporated with chicken meat and carrot puree as nutritious snack towards children. Journal of Food Science and Technology (Iran), 21(150), 64–75. Tarbiat Modares University and Association of Food Scientists and Technologists of Iran (AFSTI). https://doi.org/10.22034/FSCT.21.150.64

12. Naiker, T. S., Gerrano, A., & Mellem, J. (2019). Physicochemical properties of flour produced from different cowpea (Vigna unguiculata) cultivars of Southern African origin. Journal of Food Science and Technology, 56(3), 1541–1550. Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-019-03649-1

13. Sotelo-Díaz, L. I., Igual, M., Martínez-Monzó, J., & García-Segovia, P. (2023). Techno-Functional Properties of Corn Flour with Cowpea (Vigna unguilata) Powders Obtained by Extrusion. Foods, 12(2). MDPI AG. https://doi.org/10.3390/foods12020298

14. Kewuyemi, Y. O., & Adebo, O. A. (2024). Complementary nutritional and health promoting constituents in germinated and probiotic fermented flours from cowpea, sorghum and orange fleshed sweet potato. Scientific Reports, 14(1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41598-024-52149-6

15. Jeong, D., & Chung, H. J. (2019). Physical, textural and sensory characteristics of legume-based gluten-free muffin enriched with waxy rice flour. Food Science and Biotechnology, 28(1), 87–97. Springer Science and Business Media LLC. https://doi.org/10.1007/s10068-018-0444-8

16. Ratnaningsih, N., Suparmo, Harmayani, E., & Marsono, Y. (2020). Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles. International Journal of Biological Macromolecules, 142, 191–200. Elsevier BV. https://doi.org/10.1016/j.ijbiomac.2019.09.092

17. AOAC. (2005). Official Standard of Analysis of OAC International. 16th ed. AOAC International. Arlington, Virginia, USA: Association of Official Analytical Chemists, Inc (16th ed, Vol. 1)

18. Rodriguez-Jimenez, J. R., Amaya-Guerra, C. A., Baez-Gonzalez, J. G., Aguilera-Gonzalez, C., Urias-Orona, V., & Nino-Medina, G. (2018). Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods. Molecules, 23(12), 3210. MDPI AG. https://doi.org/10.3390/molecules23123210

19. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent (pp. 152–178). Elsevier. https://doi.org/10.1016/S0076-6879(99)99017-1

20. Rets’epile, P. M., Manoharan, K. P., & Sibusisiwe, M. (2020). DPPH radical scavenging activity of extracts from Urtica urens (Urticaceae). Journal of Medicinal Plants Research, 14(5), 232–238. Academic Journals. https://doi.org/10.5897/JMPR2019.6880

21. Haliza, W., & Widowati, S. (2021). The characteristic of different formula of low tannin sorghum instant porridge. IOP Conference Series: Earth and Environmental Science, 653(1). IOP Publishing. https://doi.org/10.1088/1755-1315/653/1/012124

22. Harusekwi Julien, S. (2016). Development of Fermented Corn and Rapoko Blend Instant Porridge. International Journal of Nutrition and Food Sciences, 5(4), 246. Science Publishing Group. https://doi.org/10.11648/j.ijnfs.20160504.13

23. Awolu, O. O., Oluwaferanmi, P. M., Fafowora, O. I., & Oseyemi, G. F. (2015). Optimization of the extrusion process for the production of ready-to-eat snack from rice, cassava and kersting’s groundnut composite flours. LWT, 64(1), 18–24. Elsevier BV. https://doi.org/10.1016/j.lwt.2015.05.025

24. Subedi, S., Suttisansanee, U., Kettawan, A., Chupeerach, C., Khemthong, C., Thangsiri, S., & On-nom, N. (2022). Food Fortification of Instant Pulse Porridge Powder with Improved Iron and Zinc Bioaccessibility Using Roselle Calyx. Nutrients, 14(19). MDPI AG. https://doi.org/10.3390/nu14194070

25. Slamet, A., Kanetro, B., & Setiyoko, A. (2021). The Study of Physic Chemical Properties and Preference Level of Instant Porridge Made of Pumpkin and Brown Rice. International Journal on Food, Agriculture and Natural Resources (IJFANRES), 2(2), 20–26. Jember University. https://doi.org/10.46676/ij-fanres.v2i2.29

26. Slamet, A., Praseptiangga, D., Rofandi, H., & Samanhudi. (2019). Physicochemical and Sensory Properties of Pumpkin (Cucurbita moschata D) and Arrowroot (Marantha arundinaceae L) Starch-based Instant Porridge. International Journal on Advanced Science, Engineering and Information Technology, 9(2). Insight Society. http://doi.org/10.18517/ijaseit.9.2.7909

27. Otondi, E. A., Nduko, J. M., & Omwamba, M. (2020). Physico-chemical properties of extruded cassava-chia seed instant flour. Journal of Agriculture and Food Research, 2. Elsevier BV. https://doi.org/10.1016/j.jafr.2020.100058

28. Yusuf, M. T. O., Masahid, A. D., Ratnawati, L., Indrianti, N., Ekafitri, R., Sholichah, E., Afifah, N., Sarifudin, A., Hikal, D. M., Sami, R., Khojah, E., Aljahani, A. H., Al-Moalem, M. H., & Fikry, M. (2022). Impact of Heating Temperature on the Crystallization, Structural, Pasting, and Hydration Properties of Pre-Gelatinized Adlay Flour and Its Implementation in Instant Porridge Product. Crystals, 12(5). MDPI AG. https://doi.org/10.3390/cryst12050689

29. Chen, C., Jiang, S., Li, M., Li, Y., Li, H., Zhao, F., Pang, Z., & Liu, X. (2021). Effect of high temperature cooking on the quality of rice porridge. International Journal of Agricultural and Biological Engineering (IJABE), 14(5), 247–254. Chinese Society of Agricultural Engineering. https://doi.org/10.25165/j.ijabe.20211405.6412

30. Brishti, F. H., Chay, S. Y., Muhammad, K., Ismail-Fitry, M. R., Zarei, M., Karthikeyan, S., & Saari, N. (2020). Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Research International, 138. Elsevier BV. https://doi.org/10.1016/j.foodres.2020.109783

31. Mohammed, H. H., Tola, Y. B., Taye, A. H., & Abdisa, Z. K. (2022). Effect of pretreatments and solar tunnel dryer zones on functional properties, proximate composition, and bioactive components of pumpkin (Cucurbita maxima) pulp powder. Heliyon, 8(10). Elsevier BV. https://doi.org/10.1016/j.heliyon.2022.e10747

32. Charles, A. L., Cato, K., Huang, T. C., Chang, Y. H., Ciou, J. Y., Chang, J. S., & Lin, H. H. (2016). Functional properties of arrowroot starch in cassava and sweet potato composite starches. Food Hydrocolloids, 53, 187–191. Elsevier BV. https://doi.org/10.1016/j.foodhyd.2015.01.024

33. Bekele, D. W., & Emire, S. A. (2023). Effects of pre-drying treatment and particle sizes on physicochemical and structural properties of pumpkin flour. Heliyon, 9(11). Elsevier BV. https://doi.org/10.1016/j.heliyon.2023.e21609

34. Yi-Shen, Z., Shuai, S., & Fitzgerald, R. (2018). Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food and Nutrition Research, 62. SNF Swedish Nutrition Foundation. https://doi.org/10.29219/fnr.v62.1290

35. Wahjuningsih, S. B., Anggraeni, D., Siqhny, Z. D., Triputranto, A., Elianarni, D., Purwitasari, L., & Azkia, M. N. (2023). Formulation, Nutritional and Sensory Evaluation of Mocaf (Modified Cassava Flour) Noodles with Latoh (Caulerpa lentillifera) Addition. Current Research in Nutrition and Food Science, 11(3), 1008–1021. Enviro Research Publishers. https://doi.org/10.12944/CRNFSJ.11.3.08

36. Aljahani, A. H. (2022). Wheat-yellow pumpkin composite flour: Physico-functional, rheological, antioxidant potential and quality properties of pan and flat bread. Saudi Journal of Biological Sciences, 29(5), 3432–3439. Elsevier BV. https://doi.org/10.1016/j.sjbs.2022.02.040

37. Mahgoub, S. A., Mohammed, A. T., & Mobarak, E.-A. (2020). Physiochemical, Nutritional and Technological Properties of Instant Porridge Supplemented with Mung Bean. Food and Nutrition Sciences, 11(12), 1078–1095. Scientific Research Publishing, Inc. https://doi.org/10.4236/fns.2020.1112076

38. Batool, M., Ranjha, M. M. A. N., Roobab, U., Manzoor, M. F., Farooq, U., Nadeem, H. R., Nadeem, M., Kanwal, R., Abdelgawad, H., Al Jaouni, S. K., Selim, S., & Ibrahim, S. A. (2022). Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). In Plants (Vol. 11, Issue 11). MDPI AG. https://doi.org/10.3390/plants11111394

39. Tarahi, M., Abdolalizadeh, L., & Hedayati, S. (2024). Mung bean protein isolate: Extraction, structure, physicochemical properties, modifications, and food applications. In Food Chemistry (Vol. 444). Elsevier BV. https://doi.org/10.1016/j.foodchem.2024.138626

40. Irakli, M., Lazaridou, A., & Biliaderis, C. G. (2021). Comparative evaluation of the nutritional, antinutritional, functional, and bioactivity attributes of rice bran stabilized by different heat treatments. Foods, 10(1). MDPI AG. https://doi.org/10.3390/foods10010057

41. Govender, L., Siwela, M., & Denhere, S. (2022). The Effect of Adding Bambara Groundnut (Vigna subterranea) on the Physical Quality, Nutritional Composition and Consumer Acceptability of a Provitamin A-Biofortified Maize Complementary Instant Porridge. Diversity, 14(12). MDPI AG. https://doi.org/10.3390/d14121088

42. Bello, F. A., Folademi, M. A., & Iwok, L. J. (2022). Development of Pearl Millet Flour-Based Cookies Supplemented Upplemented with Mung Bean and Orange Mung Mung Bean And Orange Fleshed Sweet Potato Flours. Annals of the University Dunarea de Jos of Galati, Fascicle VI: Food Technology, 46(1), 155–168. Universitatea Dunarea de Jos din Galati. https://doi.org/10.35219/FOODTECHNOLOGY.2022.1.12

43. Khaket, T. P., Dhanda, S., Jodha, D., & Singh, J. (2015). Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds. Bioorganic Chemistry, 63, 132–141. Elsevier BV. https://doi.org/10.1016/j.bioorg.2015.10.004

44. Hussain, A., Kausar, T., Din, A., Murtaza, M. A., Jamil, M. A., Noreen, S., Rehman, H. ur, Shabbir, H., & Ramzan, M. A. (2021). Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). Journal of Food Processing and Preservation, 45(6). Hindawi Limited. https://doi.org/10.1111/jfpp.15542

45. Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnell, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172–1179. Elsevier BV. https://doi.org/10.1016/j.ultsonch.2011.03.009

46. Liu, X., Xia, B., Hu, L. T., Ni, Z. J., Thakur, K., & Wei, Z. J. (2020). Maillard conjugates and their potential in food and nutritional industries: A review. In Food Frontiers (Vol. 1, Issue 4, pp. 382–397). Wiley. https://doi.org/10.1002/fft2.43

47. Chikpah, S. K., Korese, J. K., Sturm, B., & Hensel, O. (2022). Colour change kinetics of pumpkin (Cucurbita moschata) slices during convective air drying and bioactive compounds of the dried products. Journal of Agriculture and Food Research, 10. Elsevier BV. https://doi.org/10.1016/j.jafr.2022.100409

48. Xiao, H. W., Law, C. L., Sun, D. W., & Gao, Z. J. (2014). Color Change Kinetics of American Ginseng (Panax quinquefolium) Slices During Air Impingement Drying. Drying Technology, 32(4), 418–427. Informa UK Limited. https://doi.org/10.1080/07373937.2013.834928

49. Melese, A. D., & Keyata, E. O. (2022). Effects of blending ratios and baking temperature on physicochemical properties and sensory acceptability of biscuits prepared from pumpkin, common bean, and wheat composite flour. Heliyon, 8(10). Elsevier BV. https://doi.org/10.1016/j.heliyon.2022.e10848

50. Provesi, J. G., Dias, C. O., & Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202. Elsevier BV. https://doi.org/10.1016/j.foodchem.2011.03.027

51. Indrianingsih, A. W., Rosyida, V. T., Darsih, C., Apriyana, W., Iwansyah, A. C., Khasanah, Y., Kusumaningrum, A., Windarsih, A., Herawati, E. R. N., Muzdalifah, D., & Sulistyowaty, M. I. (2024). Physicochemical properties, antioxidant activities, β-carotene content, and sensory properties of cookies from pumpkin (Cucurbita moschata) and modified cassava flour (Manihot esculenta). Bioactive Carbohydrates and Dietary Fibre, 31. Elsevier BV. https://doi.org/10.1016/j.bcdf.2023.100398

52. Herminiati, A., Kristanti, D., Rimbawan, R., Dewi Astuti, I., Sutisna Achyadi, N., & Yuliantika, N. (2020). Characteristics of inulin-enriched instant porridge and its effectiveness to increase calcium absorption in infant rat models. Current Research in Nutrition and Food Science, 8(1), 256–267. Enviro Research Publishers. https://doi.org/10.12944/CRNFSJ.8.1.24

53. Márquez-Cardozo, C. J., Caballero-Gutiérrez, B. L., Ciro-Velázquez, H. J., & Restrepo-Molina, D. A. (2021). Effect of pretreatment and temperature on the drying kinetics and physicochemical and techno-functional characteristics of pumpkin (Cucurbita maxima). Heliyon, 7(4), e06802. https://doi.org/10.1016/J.HELIYON.2021.E06802

54. Hussain, A., Kausar, T., Sehar, S., Sarwar, A., Ashraf, A. H., Jamil, M. A., Noreen, S., Rafique, A., Iftikhar, K., Aslam, J., Quddoos, M. Y., Majeed, M. A., & Zerlasht, M. (2022). Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products: A key strategy to improve health in current post COVID 19 period: An updated review. In Applied Food Research (Vol. 2, Issue 2). Elsevier B.V. https://doi.org/10.1016/j.afres.2022.100241

55. Aini, N., Dwiyanti, H., Setyawati, R., Sustriawan, B., & Syukur, A. (2023). Effect of Packaging and Storage Temperature to Quality and Shelf-life of Corn Egg-roll. AIP Conference Proceedings, 2583. https://doi.org/10.1063/5.0115873

56. Mišan, A., Petelin, A., Stubelj, M., Mandić, A., Šimurina, O., Pojić, M., Milovanović, I., Jakus, T., Filipčev, B., & Jenko Pražnikar, Z. (2017). Buckwheat – enriched instant porridge improves lipid profile and reduces inflammation in participants with mild to moderate hypercholesterolemia. Journal of Functional Foods, 36, 186–194. Elsevier BV. https://doi.org/10.1016/j.jff.2017.06.056

57. Dankwa, R., Aisala, H., Kayitesi, E., & de Kock, H. L. (2021). The sensory profiles of flatbreads made from sorghum, cassava, and cowpea flour used as wheat flour alternatives. Foods, 10(12). MDPI AG. https://doi.org/10.3390/foods10123095

58. Wahjuningsih, S. B., & Susanti, S. (2018). Chemical, physical, and sensory characteristics of analog rice developed from the mocaf, arrowroof, and red bean flour. IOP Conference Series: Earth and Environmental Science, 102(1). IOP Publishing. https://doi.org/10.1088/1755-1315/102/1/012015

59. Krstić, S., Miljić, M., Antić-Stanković, J., Božić, D. D., Krivokuća, M. J., & Pirković, A. (2023). Pumpkin pulp extracts from a Serbian Cucurbita maxima Breeding Collection: Phenol profile and in vitro bioactivity. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100395

60. Halim, M. A., Wazed, M. A., Al Obaid, S., Ansari, M. J., Tahosin, A., Rahman, M. T., Noor, F., Mozumder, N. H. M. R., & Khatun, A. A. (2024). Effect of storage on physicochemical properties, bioactive compounds and sensory attributes of drinks powder enriched with pumpkin (Cucurbita moschata L.). Journal of Agriculture and Food Research, 18. Elsevier BV. https://doi.org/10.1016/j.jafr.2024.101337

61. Li, F., Wei, Y., Liang, L., Huang, L., Yu, G., & Li, Q. (2021). A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydrate Polymers, 251. Elsevier BV. https://doi.org/10.1016/j.carbpol.2020.117090

62. Farzana, T., Abedin, M. J., Abdullah, A. T. M., & Reaz, A. H. (2023). Exploring the impact of pumpkin and sweet potato enrichment on the nutritional profile and antioxidant capacity of noodles. Journal of Agriculture and Food Research, 14, 100849. Elsevier BV. https://doi.org/10.1016/J.JAFR.2023.100849

Downloads

Published

2025-01-30

Issue

Section

Articles

How to Cite

Physicochemical and sensory evaluation of pumpkin-based instant porridge with mocaf and cowpea flour. (2025). Scifood, 19(1), 96-109. https://doi.org/10.5219/scifood.8

Similar Articles

You may also start an advanced similarity search for this article.