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ABSTRACT 
The sprouting process, or germination, activates hydrolytic enzymes that enhance the nutritional profile of 

grains, making them ideal for health-conscious consumers. Sprouted grain-based soft drinks are a new product 

category in the food industry, and their popularity is increasing. This review article focuses on the processes 

and benefits of sprouted grain beverages, highlighting their nutritional enhancements and functional properties. 

The germination process, which includes soaking, sprouting, and drying, improves the availability of vitamins, 

minerals, and bioactive compounds while reducing anti-nutritional factors. Optimal conditions for germination, 

such as temperature and soaking duration, significantly influence the nutritional quality of the final product, 

with various grains like wheat, barley, and brown rice exhibiting enhanced protein, fiber, and antioxidant levels. 

Innovative production techniques, including enzyme-assisted extraction and fermentation using beneficial 

bacteria, further enhance the nutritional profiles of these beverages. However, challenges such as shelf life, 

flavor stability, and consumer acceptance remain. Sustainable agricultural practices and advancements in food 

processing technologies are essential for addressing these challenges and meeting the growing consumer 

demand for healthy, environmentally friendly products. The review emphasizes the potential of sprouted grain 

beverages as functional foods, offering a rich source of nutrients and health benefits while also addressing the 

importance of sustainable practices in their production. 
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INTRODUCTION 
 The composition and quality of nutrition play a crucial role in human health, resulting in a growing consumer 

demand for natural and balanced products. Today, it is essential that the food we consume not only boasts 

excellent sensory qualities but also includes beneficial nutrients. Sprouted grain is one of the promising 

components for food products that can enrich them with biologically active substances [1]. The consumption of 

sprouted grains is considered to be beneficial for human health. Positive consumer perception of sprouted cereal 

grains stimulates the development of new food products. Incorporating sprouted grains into food products has 

gained popularity globally, leading to research in various countries [2], [3].  

 A more promising approach is to incorporate sprouted grain into beverages, which allows for the enrichment 

of these products with biologically valuable components, as well as the expansion of the product range and an 

increase in consumer demand for the products. Sprouted cereal grains and their products are useful sources of 

nutritional fibers, vitamins, and macro- and microelements [4]. Moreover, products made from sprouted cereals 

are more effective in lowering the risk of cardiovascular and gastrointestinal diseases, as sprouted grains offer a 

range of biological benefits, including properties that are antidiabetic, antioxidant, and anticancer [3], [5]. For 

instance, germinated quinoa seeds enhance nutrient content and bioavailability while reducing antinutritional 

factors, improving anti-anemic health benefits in treated rats [6]. It has been recommended that pea and lentil 

sprouts are the most commonly suggested and highly effective remedies for enhancing liver health in cases of 
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fatty liver [7]. A recent study indicates that sprouting increases the quantity and variety of phenolic compounds 

that exhibit biological effects against colon cancer [8]. While earlier reviews have addressed sprouted grain-based 

food products, this is the first review focusing on non-alcoholic beverages derived from sprouted grains. 

Objectives 
 The present review summarizes studies on various sprouted grain beverages. This overview will also highlight 

current trends in producing sprouted grain beverages and identify research gaps that could lead to future 

innovations in this growing sector. 

Processing techniques for sprouted grain beverages and factors influencing the 
sprouting process 
Sprouting process of grains and nutritional changes 
 The sprouting, also known as ‚ "germination, " causes hydrolytic enzyme activation and de novo synthesis, 

making nutrients available for plant growth and development [9]. The sprouting process involves stages, including 

soaking, germination, and drying (Figure 1). The grains are initially soaked in water to initiate the sprouting 

process. This step helps to activate enzymes and begins the germination process. The soaking time can vary 

depending on the grain type. The duration of soaking and temperature impact the final product's nutritional quality 

and flavor. For instance, soaking glutinous sorghum grains at 70 °C for 6 hours optimally enhances enzymatic 

hydrolysis rate by 11.0%, increases amylose content by 53.1%, and improves final viscosity by 10.4% compared 

to non-soaked samples, while inhibiting bacterial growth [10]. Over-soaking can lead to mushy grains, while 

insufficient soaking may lead to incomplete sprouting. The findings suggest that a combination of 24-hour soaking 

and germination optimally enhances the nutritional profile of millet grains [11]. Moreover, the partial soaking 

treatment of brown rice resulted in γ-aminobutyric acid (GABA) content of up to 125 mg/100 g, higher total 

phenolic and flavonoid content, and superior antioxidant activity compared to other germination methods [12]. 

 After soaking, the grains are drained and kept in a controlled environment to promote germination. During this 

phase, the grains begin to sprout, which enhances their nutritional profile by increasing the availability of vitamins 

and minerals and reducing anti-nutritional factors [13]. It was observed that the germination of barley grains 

optimally enhanced nutritional and functional properties, resulting in a 1.4 to 2.5-fold increase in ascorbic acid, 

riboflavin, phenolic compounds, and GABA [14]. Sprouted grains are intriguing components for creating protein-

rich food products [15]. Sprouted amaranth exhibited the highest oil yield at 5.71 ± 0.26%. In contrast, sprouted 

rye had the lowest omega-6/omega-3 ratio at 7 to 1, and germinated oat showed a significant fat content increase 

of 54.3% compared to the control [16]. In addition, incorporating 10 grams of germinated wheat into Korean 

Sunsik ready-to-drink enhanced its quality and appeal to health-conscious consumers [17]. General changes in 

chemical composition during germination are presented in Figure 2. 

 The germination period depends on the grain and environmental conditions. Optimal temperatures (usually 

between 20-30°C) encourage germination, while extreme temperatures can inhibit sprouting or damage the 

sprouts [18]. Optimizing germination conditions at 21 °C for 7 days yields wheat sprouts with a desirability score 

of 0.89, significantly enhancing their soluble phenolic composition and associated antioxidant and anti-

inflammatory properties [19]. The ideal conditions for germinating foxtail millet sprouts to enhance total phenolic 

content and GABA levels involve soaking the seeds at 31 °C for 4.5 hours, followed by germination at 35 °C 

using a 4.5 g/L sucrose solution for 5 days [20]. Moreover, proper humidity levels and light are also essential 

during germination [21]. Research indicates that a light/dark photoperiod promotes earlier germination of wild 

oats by 2 to 6 days compared to continuous darkness [22].  

 Once the desired sprout length is achieved, the grains are dried to halt germination and preserve their nutritional 

benefits. Drying can be done using various methods such as air drying or sun drying and it is crucial to maintain 

temperatures that do not damage the nutrients. Sorghum that had been soaked in water for 16 hours at 25 °C and 

90% relative humidity, and then sprouted for 72 hours, underwent two different drying methods. The findings 

indicated that the drying process conducted at a lower temperature for a longer duration (40 °C for 12 hours) 

preserved the enzymatic activity that began during sprouting, in contrast to the drying method applied at a higher 

temperature for a shorter time (50 °C for 6 hours) [23]. The non-uniformity in microwave drying affected the 

assessment of GABA content in dried germinated brown rice, with an optimal average grain temperature of 64–

67 °C helping to preserve higher GABA levels [24]. Jribi et al. (2022) concluded that while lyophilization best 

preserved the nutritional properties of durum wheat sprouts, microwave vacuum drying offered a favorable 

alternative with lower losses compared to oven drying, highlighting the importance of selecting appropriate drying 

methods based on desired outcomes [25]. In addition, another study successfully demonstrated that the thin-layer 

drying behavior of sprouted wheat is significantly influenced by drying temperature and duration [26]. A different 

study indicated that infrared drying is a promising technique for producing germinated naked barley rich in 

flavonoids and may offer potential health benefits [27]. 
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Figure 1 General steps in the production of sprouted grain-based beverages. 

 

Beverage production methods 
 Various methods can be employed to produce beverages from sprouted grains. However, most soft drinks from 

grains are made by extracting the soluble substances of raw plant materials with water and separating the liquid. 

Soaked sprouted grains are blended with water and then strained to create a nutritious liquid. Unlike other 

methods, such as fermentation, blending preserves more raw nutrients and enzymes in the sprouted grains, 

resulting in a fresher and more vibrant flavor profile. Meanwhile, sprouted grains can be blended with other 

ingredients, such as fruits, vegetables, or spices, to create nutrient-rich smoothies or health drinks. This method 

allows for flavor customization and enhanced nutritional profiles [28]. The pulse electric field (PEF) method, 

microwave-existed extraction (MEE) method and enzyme-assisted method are all innovative techniques used to 

produce sprouted grain-based beverages. The PEF method utilizes short bursts of high-voltage electric pulses to 

permeabilize cell membranes, enhancing the extraction of bioactive compounds from sprouted grains while 

preserving their nutritional quality. The MEE method combines microwave energy with traditional extraction 

techniques to rapidly heat and break down plant cell structures, facilitating the efficient release of flavors and 

nutrients from sprouted grains into the beverage. The enzyme-assisted method employs specific enzymes to 

hydrolyze complex carbohydrates and proteins in sprouted grains, improving the extraction process and resulting 

in a smoother texture and enhanced nutritional profile in the final beverage [5].  

 Fermentation uses yeast or bacteria to convert sugars in the sprouted grains into alcohol or lactic acid. 

Fermentation can enhance flavor complexity and probiotic content, resulting in beverages like sprouted grain 

beverages [29]. Most probiotic products currently available are milk-based, challenging the growing vegan 

market. In this context, fermented beverages from sprouted grains offer a valuable alternative [30]. Nowadays, 

fermented sprouted grain-based beverages commonly utilize several genera of bacteria, including Lactobacillus, 

Leuconostoc, Bifidobacterium, and Streptococcus [31], [32], [33], [34], [35]. 

 Homogenization is crucial for achieving a desirable texture and stability in sprouted grain beverages. Recent 

technological advancements have led to the development of more efficient homogenization techniques and 

equipment, allowing for better nutrient extraction and improved sensory attributes in sprouted grain beverages. 

Homogenization involves particle size's mechanical breakdown and emulsions' stabilization to ensure uniform 

consistency and prevent separation [36]. A colloid mill is designed to reduce the size of particles by applying 

shear and grinding forces. This method can be particularly effective for achieving a homogenous blend of sprouted 

grains and water, resulting in a smooth beverage. The high-pressure homogenization (HPH) method uses high 

pressure to force the liquid through a narrow space, breaking down the particles. It can significantly reduce the 
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size of solid particles, leading to a smoother texture [37]. Ultrasonic homogenization (USH) involves using 

ultrasonic waves to create cavitation bubbles in the liquid, which collapse and create shear forces that break down 

particles [38]. This method can enhance the extraction of nutrients and flavors of beverages. Microfluidization is 

a process that involves the use of high pressure to force a liquid through a small orifice, resulting in the reduction 

of particle size and the creation of a more uniform dispersion. For instance, the study showed that whole oat milk 

produced from germinated oats via high-energy fluidic microfluidization significantly enhanced the nutritional 

quality of the final product [39]. 

 Stabilization techniques can be employed to maintain the quality and extend the shelf life of sprouted grain 

beverages. Heat treatment can help inactivate enzymes and microorganisms, improving stability, but it must be 

balanced to avoid nutrient loss. For instance, the beverage made from red, black, and white quinoa complied with 

sanitation standards following pasteurization and demonstrated satisfactory antioxidant capacity [40].  

 

Figure 2 Overall changes in chemical composition during sprouting. 

 

Types of sprouted grain beverages and nutritional benefits 
Sprouted barley drinks 
 Sprouted barley drinks are rich in fiber, vitamins, and minerals [41]. The germination of highland barley for 

40 hours significantly enhanced the total phenols and flavonoids in the fermented beverage, reaching 2.69 mg/mL 

and 1.71 mg/mL, respectively, which is an increase of 21.72% and 26.67% compared to the control. Additionally, 

the antioxidant activity improved markedly, with DPPH scavenging rates of 94.11% at 40 hours and ABTS 

scavenging rates of 64.64% at 48 hours, surpassing the control values [31]. The study by Castro et al. (2024) 

showed that germination of barley varieties significantly enhances their nutrient profile, including increased total 

sugars (269.52 mg/g), total phenols (18.17 mg GAE/g) and DPPH radical scavenging activity (327%) compared 

to ungerminated barley, indicating potential health benefits from barley-derived foods and extracts [42]. Another 

study demonstrated that beverages made from germinated barley, highland barley, and rice grains significantly 

enhanced the quality of non-dairy probiotic-fermented drinks, with those containing 6 g of the cereal mixture 

achieving the highest sensory acceptability scores and showcasing antioxidant capacities ranging from 1.08 to 

1.26 mM compared to ungerminated [43]. In addition, the health mix-based functional drink, enriched with orange 

peel flour, malted barley, and fenugreek, demonstrates enhanced antioxidant properties and nutritional value but 
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experiences a decline in sensory quality over time [44]. Yin et al. (2024) reported that germination significantly 

enhances GABA levels in highland barley beverages while minimally affecting taste and aroma, making it a key 

process for improving the functional quality of GABA-rich drinks [45].  

Sprouted wheat drinks 
 Sprouted wheat beverages are high in protein, essential amino acids, and dietary fiber.  

For instance, the study found that after germination, the protein content in wheat flour increased from an 

unspecified level to 13.05 mg/100 g, and total phenolic compounds increased from 7.53 mg/g to 12.36 mg/g. In 

comparison, phytic acid decreased from 25.9 mg/g to 6.3 mg/100 g, and essential amino acids such as leucine and 

methionine emerged post-germination, highlighting significant nutritional enhancements [46]. 

 It has been explored that Lactobacillus acidophilus NCDC-14 can effectively be used to develop a probiotic 

beverage with optimized sprouted wheat flour, oat, wheat bran, and guar gum per, resulting in a beverage 

containing 10.43 log10 cfu mL(-1) probiotic count [34]. Furthermore, optimizing the roasting conditions of 

germinated wheat significantly enhanced total flavonoid content (0.74 mg CE/g), total phenolic content (1.95 mg 

GE/g), DPPH radical scavenging activity (5.10 μM TE/g), and Trolox equivalent antioxidant capacity (9.45 mM 

TE/g), while also achieving higher consumer preference scores for cold beverage [47]. A probiotic non-dairy 

drink based on sprouted cereals, including wheat, barley, millet, green gram, and oats, with the addition of soy 

milk, showed the best results in terms of sensory acceptability [48]. Table 1 shows beverages based on various 

sprouted grains. 
Sprouted rice drinks 

 This beverage is made from sprouted brown rice and can be a popular gluten-free option. It provides complex 

carbohydrates, fiber, and a range of vitamins and minerals, especially in the form of antioxidants. It was shown 

that sprouted black rice and white rice are particularly promising for functional beverage production due to their 

high protein, fiber, and carbohydrate content, while sprouted pigmented rice showed potential as a natural 

antioxidant source and enhanced the nutritional and functional qualities of the beverages [49]. The study by 

Beaulieu et al. (2020) demonstrated that germination and enzyme processing of brown rice resulted in 96.7% 

germination, a 71.6% reduction in phytic acid, and significant macronutrient loss (27.0% protein, 30.9% oil, and 

28.9% carbohydrate), leading to a viable method for producing a soluble matrix for value-added sprouted brown 

rice beverages [50]. Furthermore, it has been observed that initial germinated brown rice beverages' lipid profiles 

were higher than non-germinated brown and white rice beverages [51]. Jabeen et al. (2024) showed that the 

germinated brown rice beverage offers enhanced nutritional benefits with γ-oryzanol at 52.73%, total phenolic 

content at 26.68 mg GAE/100 g, niacin at 5.17%, GABA at 42.12 mg/100 g, and antioxidant activity at 74.23 

µmol TE/100 g [52]. Pressurized germinated purple rice beverages, despite experiencing faster color changes and 

a decrease in certain phytochemicals during storage, maintained stable levels of GABA and γ-oryzanol while 

supporting the viability of encapsulated Lactobacillus casei 01 [53].  
Sprouted oat drinks 

 Sprouted oat beverages benefit individuals with gluten sensitivity, making them particularly important. Offers 

heart-healthy beta-glucans, fiber, and a range of vitamins and minerals [54]. Aparicio-García et al. (2021) reported 

that beverages based on fermented sprouted oat have some health effects on celiac people [32]. Meanwhile, 

another study observed good physicochemical properties, microbiological quality, and stability during 20 days of 

fermented oat drink storage with L. plantarum WCFS1 [33]. Furthermore, the sprouting and sprouting–acidic 

treatments yielded the highest oat milk yield (91.70%) and protein extraction yield (82.74%), highlighting the 

superior nutritional and functional benefits of two-stage treatments compared to singular therapies [55]. The study 

by Wei et al. (2024) demonstrated that whole oat milk produced from germinated oats via high-energy fluidic 

microfluidization at an optimal pressure of 120 MPa significantly enhanced nutritional quality, with total protein, 

γ-aminobutyric acid, total phenolics, and soluble protein [39]. 
Sprouted pseudocereal drinks 

 Quinoa, buckwheat, and amaranth are pseudo-grains that can be sprouted and turned into beverages. Such 

beverages can be a complete protein source, rich in essential amino acids, and contain healthy fats and fiber. The 

research explored that the optimal quinoa beverage, composed of 81.67% sprouted black quinoa and 18.33% 

sprouted white quinoa, significantly enhanced antioxidant capacity and nutritional content compared to the control 

treatment while meeting sanitary standards for microbiological safety [40]. Interestingly, the study by Obaroakpo 

et al. (2019) observed that quinoa yogurt beverage fermented with Lactobacillus casei SY13 and Lactobacillus 

casei Zhang, optimized through germination-enhanced hydrolysis, exhibits a dual inhibitory effect on both α-

glucosidase and angiotensin-converting enzyme (ACE) due to its bioactive peptides [56]. 

 The developed functional drink, optimized with a blend of buckwheat, amaranth, and oats, achieved significant 

nutritional benefits, including 2.93% dietary fiber, 0.89% β-glucan, 30.65% DPPH antioxidant activity, 19.63% 

ABTS antioxidant activity, 248.84 mg GAE/100 g total polyphenols, 1.23% fat, and 1452.6 mg/L calcium [57]. 
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The optimized gluten-free beverage fermented with L. plantarum and B. bifidum contained an average of 8.4 log 

(CFU ml-1) of live lactobacilli and 7.8 log (CFU ml-1) of viable bifidobacterial cells after 15 days of refrigerated 

storage. The final formulation included 51.96% sprouted buckwheat and 48.04% lentil flours, yielding a beverage 

with 0.25% acidity, 5.7 pH, and 41.02% DPPH antioxidant activity [35]. 

 

Table 1 Beverages based on various sprouted grains 
Sprouted grain type Method Study outcomes Source 

Barley Fermented Good antioxidant activity [31] 

Barley Extraction Germination significantly enhances their 

nutrient profile 

[42] 

Barley, highland barley, rice Fermentation with L. 

plantarum ZJ5 

Highest sensory acceptability scores and 

antioxidant capacities 

[43] 

Barley, 

orange peel, 

fenugreek. 

Blending Enhanced antioxidant properties and 

nutritional value but decreased sensory quality 

during storage 

[44] 

Highland barley Extraction Significantly enhanced GABA level [45] 

Oat Fermentation with  

L. plantarum 

Reduced cholesterol levels and anti-

inflammatory effects 

[32] 

Fermentation with  

L. plantarum WCFS1 

Showed good physicochemical properties, 

microbiological quality, stability during 

storage 

[33] 

Extraction Yielded the highest oat milk and protein 

extraction yield  

[55] 

Extraction Enhanced nutritional quality and instability 

index, reduced particle size 

[39] 

Wheat Fermentation with 

L. acidophilus 

Increased probiotic count [34] 

Extraction Optimizing the roasting conditions of 

germinated wheat significantly enhanced 

nutritional and consumer acceptance scores 

[47] 

Wheat, barley, pearl millet, 

green gram, oat, soymilk 

Fermentation with 

L.acidophilus NCDC14 

Sensory acceptability was higher in those  

with soymilk  

[48] 

Brown rice Blending Enhanced the nutritional and functional 

qualities 

[49] 

Extraction Developed process yields a soluble matrix 

from sprouted brown rice with a high 

concentration of soluble solids 

[50] 

Blending Increased lipid profiles of germinated brown 

rice  

[51] 

Blending Enhanced γ-oryzanol, total phenolic content, 

niacin, GABA 

[52] 

Purple rice Fermented with 

encapsulated Lactobacillus 

casei 01 

Enhanced GABA and γ-oryzanol profile, but 

experienced quick change in color during 

storage 

[53] 

Quinoa Blending Significantly enhanced antioxidant capacity 

and nutritional content 

[40] 

Fermentation with  

L. casei SY13 and  

L. casei Zhang 

Inhibitory effect on both α-glucosidase and 

ACE 

[56] 

Buckwheat, amaranth, oats Extraction Achieved significant nutritional benefits [57] 

Buckwheat, 

honey buckwheat, inulin 

fermentation with  

L. plantarum 

Decrease of polyphenols and antioxidant 

activity in the gastric passage 

[58] 

Buckwheat, lentil Fermentation with  

L. plantarum,  

B. bifidum 

Increased viable cells after 15 days of 

refrigerated storage 

[35] 

 

https://www.sciencedirect.com/topics/food-science/pearl-millet
https://www.sciencedirect.com/topics/food-science/mung-bean
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Challenges and future directions 
 Producing sprouted grain beverages presents several challenges, including maintaining consistent quality, 

issues related to shelf life, and balancing flavor profiles to meet consumer preferences [59]. The shelf life of 

sprouted grain beverages is crucial because it affects their nutritional quality, flavor, and safety for consumption. 

The shelf life of sprouted grain-based beverages can vary significantly depending on several factors, including 

the ingredients used, the method of production, and storage conditions. Sprouted grain beverages can have a 

shorter shelf-life due to their high moisture content and presence of live cultures, which can lead to spoilage and 

potential food safety issues. Moreover, sprouted grains contain oils and fats that can oxidize, leading to rancidity. 

This not only affects flavor but also can produce harmful compounds. Effective preservation methods, such as 

pasteurization, high-pressure processing (HPP), or adding natural preservatives such as citric acid, are crucial to 

extending shelf-life while maintaining nutritional quality. Recent studies have demonstrated that employing a 

mathematical model to identify the ideal storage conditions for functional beverages made from sprouted grains 

could enhance their shelf life and reduce spoilage [60]. Products with a longer shelf life can reduce waste and 

increase profitability. Unsold items that spoil before consumption represent a loss for manufacturers and retailers, 

while extended shelf life can enhance marketability. 

 Maintaining flavor stability can be challenging due to the natural enzymatic activity present in sprouted grains. 

Off-flavors can develop over time, necessitating careful control of processing conditions and storage practices to 

ensure a consistent taste profile [61]. Therefore, it is essential to use high-quality sprouted grains and experiment 

with different sprouted grain varieties to find the most desirable flavor profiles. While the health benefits of 

sprouted grain beverages are widely recognized, consumer acceptance can vary. Factors such as taste, texture, 

and familiarity with the product play a significant role in market success.  

 Cultivating grains for beverages requires significant agricultural resources, including water, land, and energy. 

Sustainable practices can help minimize the environmental impact associated with these inputs. Conventional 

grain farming often involves synthetic fertilizers and pesticides, leading to soil degradation, water pollution, and 

biodiversity loss. Sustainable practices like organic farming and crop rotation can mitigate these effects. As 

consumers become increasingly aware of environmental issues, there is a growing demand for sustainably 

produced food and beverages. Focusing on local sourcing of grains, organic farming practices, and minimal 

processing could appeal to environmentally conscious consumers. 

Innovations in food processing technology could improve the efficiency and scalability of producing sprouted 

grain beverages. Recently, a groundbreaking green processing technology was implemented to make a sprouted 

brown rice-based beverage, utilizing an innovative enzyme-driven approach that enhances sustainability while 

delivering a nutritious drink [49]. These innovations can enhance flavor retention, improve shelf life, and reduce 

the presence of anti-nutritional factors, making the final products more appealing to consumers. 

 

Conclusion 
 Sprouting grains significantly enhances their nutritional profile, leading to beverages rich in vitamins, 

minerals, and bioactive compounds. Furthermore, innovative beverage production methods, including blending, 

fermentation, and advanced extraction techniques, enable the creation of nutrient-rich sprouted grain beverages 

that cater to health-conscious consumers while maintaining flavor and nutritional quality. Sprouted grain 

beverages, including those made from barley, wheat, rice, oats, and pseudocereals, exhibit enhanced nutritional 

profiles, antioxidant capacities, and potential health benefits due to germination. These beverages cater to specific 

dietary needs, such as gluten sensitivity, and demonstrate promise in promoting functional food innovations and 

probiotic applications. However, challenges like shelf life, flavor stability, and the need for sustainable 

agricultural practices must be addressed to meet market demands. The limited research on beverages made from 

sprouted grains indicates a clear need for further investigation. Continued research and innovation in processing 

technologies can further enhance the quality and acceptance of beverages based on sprouted grains. 
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