The microstructure of the liver in broiler chickens under the administration of a probiotic complex of Bifidobacteria and Lactobacilli

Authors

  • Artem Vivych National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Veterinary Hygiene, Vystavkova Str. 16, 03041, Kyiv, Ukraine, Tel.: +38-063-588-63-60 Author https://orcid.org/0009-0005-7757-7339
  • Olha Iakubchak National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Veterinary Hygiene, Vystavkova Str. 16, 03041, Kyiv, Ukraine, Tel.: +38-050-440-81-31 Author https://orcid.org/0000-0002-9390-6578
  • Leonid Horalskyi Zhytomyr Ivan Franko State University, Faculty of Natural Sciences Zhytomyr Ivan Franko State University, Department of Zoology, Biological Monitoring and Nature Protection, V. Berdychivska Str., 40, 10008, Zhytomyr, Ukraine, Tel.: +38-098-878-58-66 Author https://orcid.org/0000-0002-4251-614X
  • Larysa Shevchenko National University of Life and Environmental Sciences of Ukraine, Faculty of Veterinary Medicine, Department of Animal and Food Hygiene named after Professor A.K. Skorokhodko, Vystavkova Str., 16, 03041, Kyiv, Ukraine, Tel.: +38(050)193-10-29 Author https://orcid.org/0000-0001-7472-4325
  • Lyudmila Beyko National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products Department of technology of meat, fish and marine products, Vystavkova, Str., 16, 03040, Kyiv, Ukraine Author https://orcid.org/0000-0001-6211-8010
  • Anastasia Lialyk Ternopil Ivan Puluj National Technical University, Faculty of Engineering of Machines, Structures and Technologies, Food Biotechnology and Chemistry Departmen, Ruska str., 56, 46001, Ternopil, Ukraine Author https://orcid.org/0000-0003-3013-1784
  • Yuliya Kryzhova National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Technology of meat, fish and marine products, Polkovnika Potekhina Str., 16, 03040, Kyiv, Ukraine, Tel.:+38(093)0370077 Author https://orcid.org/0000-0003-1165-8898
  • Tatyana Naumenko National University of Life and Environmental Sciences of Ukraine, Faculty of Food Technology and Quality Control of Agricultural Products, Department of Standardization and Certifying of Agricultural Products, Vystavkova Str., 16, 03041, Kyiv, Ukraine, Tel.:+38(093) 921-96-80 Author https://orcid.org/0000-0003-0098-927X

DOI:

https://doi.org/10.5219/scifood.68

Keywords:

Bifidobacterium gallinarum, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus paracasei ssp. paracasei, broiler chicken rearing

Abstract

The global consumption of broiler chicken meat is increasing annually, which involves the use of intensive technologies in poultry farming and the application of a significant number of additives aimed at preventing infectious diseases in livestock. One such means is the probiotic preparation TIMM-P, which includes Bifidobacterium gallinarum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus paracasei subsp. paracasei. To determine the effectiveness of its use, two groups of one-day-old Cobb 500 broiler chickens, each comprising 50 birds, were formed. The probiotic TIMM-P was administered via drinking over 2 hours in the morning, before feeding, on days 1–5, 21–25, and 30–35 of the rearing period. The liver microstructure of one-day-old broiler chickens did not differ between the groups, more pronounced changes were recorded at an older age. On the 14th day of growth in broiler chickens that received the basic diet, the cytoplasm of hepatocytes was characterised by a reduced optical density and contained small lipid droplets. During the administration of the probiotic TIMM-P to the chickens in this period, the cytoplasm of hepatocytes had a uniform and intense colouration while maintaining the radiality of the tubular structure of the liver lobules. On the 28th day of growth in broiler chickens of the control group, the development of fatty liver dystrophy was observed. The administration of probiotics to broiler chickens was associated with the development of small-droplet fatty liver dystrophy. On the 42nd day of growth, the phenomena of apoptosis, necrosis of hepatocytes, and fatty liver dystrophy with sections of the portal tracts in a state of interstitial inflammation, with stasis in various sections of the venous bed were detected in the liver of broiler chickens of the control group. The use of probiotics in broiler chickens partially reduced the intensity of pathological changes in the liver; however, in some animals, destruction of the tubular structure within its lobules was detected, accompanied by perivascular infiltration by polymorphic cells. The use of probiotics in broiler chickens did not significantly affect the volume of hepatocytes and their nuclei. Still, it contributed to a tendency to reduce their nuclear-cytoplasmic ratio, which indicated a higher intensity of liver function regeneration. The results obtained from the study indicate a positive effect of the complex probiotic TIMM-P on the liver microstructure, which, considering the indicators of meat quality and safety, may justify its introduction into industrial-scale broiler chicken meat production.

References

1. Zakharenko М. О., Cheverda І. М., & Kurbatova І. М. (2022). Effects of gonadectomy on clinical-hematological, metabolic and hormone conditions of cockerels. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 1, p. 10-14). Oles Honchar Dnipro National University. https://doi.org/10.15421/022202

2. Sychov, M., Ilchuk, I., Umanets, D., Balanchuk, I., Ibatullin, I., Umanets, R., Holubietva, T., Otchenashko, V., Kondratiuk, V., Tytariova, O., Kuzmenko, O., & Orishchuk O. (2022). Slaughter parameters of broiler chickens at different levels and ratios of arginine and lysine in the compound feed. Acta Fytotechnica et Zootechnica (Vol. 25, Issue 4, p. 285-293). Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra https://doi.org/10.15414/afz.2022.25.04.285-293

3. Tarradas, J., Tous, N., Esteve-Garcia, E., & Brufau, A. J. (2020). The control of intestinal inflammation: a major objective in the research of probiotic strains as alternatives to antibiotic growth promoters in poultry. In Microorganisms (Vol. 8, Issue 2, p. 148). MDPI AG. https://doi.org/10.3390/microorganisms8020148

4. Choi J. (2025). Challenges in poultry production systems and nutritional interventions. In Animals (Vol. 15, Issue 4, p. 530). MDPI AG. https://doi.org/10.3390/ani15040530

5. Shioda, K., Smith, F., Mucache, H. N., Marri, A. R., Chew, J., Levy, K., & Freeman, M. C. (2024). Purchase, consumption, and ownership of chickens and chicken products among households in Maputo, Mozambique: A cross-sectional study. In One Health (Vol. 19, p. 100943). Elsevier BV. https://doi.org/10.1016/j.onehlt.2024.100943

6. Jankowski, J., Tykałowski, B., Stępniowska, A., Konieczka, P., Koncicki, A., Matusevičius, P., & Ognik, K. (2022). Immune parameters in chickens treated with antibiotics and probiotics during early life. In Animals (Vol. 12, Issue 9, p. 1133). MDPI AG. https://doi.org/10.3390/ani12091133

7. Putra, R. P., Astuti, D., Respati, A. N., Ningsih, N., Triswanto, Yano, A. A., Gading, B. M. W. T., Jayanegara, A., Sholikin, M. M., Hassim, H. A., Azmi, A. F. M., Adli, D. N., & Irawan, A. (2024). Protective effects of feed additives on broiler chickens exposed to aflatoxins-contaminated feed: a systematic review and meta-analysis. In Veterinary Research Communications (Vol. 48, Issue 1, p. 225–244). Springer Nature B.V. https://doi.org/10.1007/s11259-023-10199-7

8. Shevchenko, L.V., Nedosekov, V.V., Davydovych, V.A., Rozhdestveskaya, T.N., & Drozdova, E.I. (2021). Impact of lycopene and astaxanthin on hematological and immunological parameters of laying hens. In IOP Conference Series: Earth and Environmental Science (Vol. 839, Issue 4, p. 042004). Institute of Physics. https://doi.org/10.1088/1755-1315/839/4/042004

9. Shevchenko, L. V., Dovbnia, Y. Y., Zheltonozhskaya, T. B., Permyakova, N. M., Vygovska, L. M., & Ushkalov, V. O. (2021). The effect of nanosilver in carriers based on polymer/inorganic hybrids on the quality and safety of edible chicken eggs. In Regulatory Mechanisms in Biosystems (Vol. 12, Issue 3, p. 391-395). Oles Honchar Dnipro National University. https://doi.org/10.15421/022153

10. Shevchenko, L. V., Dovbnia, Y. Y., Permyakova N. М., Zheltonozhskaya Т. B., Shulyak, S. V., & Klymchuk, D. O. (2022). Influence of nanosilver in hybrid carriers on morphological and biochemical blood parameters of laying hens. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 1, p. 15-22). Oles Honchar Dnipro National University. https://doi.org/10.15421/022203

11. Kumar, H., Bhardwaj, I., Nepovimova, E., Dhanjal, D. S., Shaikh, S.S., Knop, R., Atuahene, D., Shaikh, A. M., & Béla, K. (2025). Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. In Journal of Agriculture and Food Research (Vol. 21, p. 101859). Elsevier BV. https://doi.org/10.1016/j.jafr.2025.101859

12. Luhovyi, S., Kalynychenko, H., Trybrat, R., & Tymofiiv, M. (2025). Use of the probiotic preparation “SVITECO-PWC” in the cultivation of broiler chickens. In Animal Science and Food Technology (Vol. 16, Issue 1, p. 38-54). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.1.2025.38

13. Xiao, X., Cui, T., Qin, S., Wang, T., Liu, J., Sa, L., Wu, Y., Zhong, Y., & Yang, C. (2024). Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. In Poultry Science (Vol. 103, Issue 12, p. 104280). Elsevier BV https://doi.org/10.1016/j.psj.2024.104280

14. Naeem, M., & Bourassa, D. (2025). Probiotics in poultry: unlocking productivity through microbiome modulation and gut health. In Microorganisms (Vol. 13, Issue 2, p. 257). MDPI AG. https://doi.org/10.3390/microorganisms13020257

15. Amevor, F. K., Uyanga, V. A., Wu, L., Xu, D., Shu, G., Wang, Y., & Zhao, X. (2025). Enhancing poultry health and productivity through the liver-gut axis with integrated nutritional and immunological approaches: a mini-review. In Frontiers in Physiology (Vol. 16, p. 1537099). Frontiers Media S.A. https://doi.org/10.3389/fphys.2025.1537099

16. Vovkotrub, V., Kolacz, R., Iakubchak, O., Vovkotrub, N., & Shevchenko, L. (2024). Effect of lactic acid bacteria ferment cultures on pork freshness. In Ukrainian Journal of Veterinary Sciences, (Vol. 15, Issue 1, p. 48-65). National University of Life and Environmental Sciences of Ukraine.https://doi.org/10.31548/veterinary1.2024.48

17. Vovkotrub, V., Iakubchak, O., Horalskyi, L., Vovkotrub, N., Shevchenko, L., Shynkaruk, N., Rozbytska, T., Slyva, Y., Tupitska, O., & Shtonda, O. (2023). The microscopic structure of pork neck after cooling with showering stiving and processing by culture Lactobacillus sakei. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, p. 759–776). HACCP Consulting. https://doi.org/10.5219/1905

18. Bal-Prylypko, L., Danylenko, S., Mykhailova, O., Nedorizanyuk, L., Bovkun, A., Slobodyanyuk, N., Omelian, A., & Ivaniuta, A. (2024). Influence of starter cultures on microbiological and physical-chemical parameters of dry-cured products. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, pp. 313–330). HACCP Consulting. https://doi.org/10.5219/1960

19. Lokes, S. I., Shevchenko, L. V., Mykhalska, V. M., Poliakovskyi, V. M., & Zlamanyuk, L. M. (2024). Influence of Lactobacillus curvatus and Lactococcus lactis subsp. lactis on the shelf life of sausages in vacuum packaging. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 2, p. 321-326). Oles Honchar Dnipro National University. https://doi.org/10.15421/022446

20. Lokes, S. I., Shevchenko, L. V., Mykhalska, V. M., Poliakovskyi, V. M., & Chepil, L. V. (2024). Chemical composition of sausages processed with starter cultures Lactobacillus curvatus and Lactococcus lactis subsp. lactis during storage in vacuum packaging. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 3, p. 405-409). Oles Honchar Dnipro National University. https://doi.org/10.15421/022456

21. Bal-Prylypko, L., Kanishchev, O., Mushtruk, M., & Leonova, B. (2024). Development of technology for extended-shelf-life meat products. In Animal Science and Food Technology, (Vol. 15, Issue 4, p. 132-149). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.4.2024.132

22. Nisa, K., Arisandi, R., Ibrahim, N., & Hardian, H. (2025). Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. In The International Journal of Neuroscience (Vol. 135, Issue 1, p. 41-51). Informa UK Limited. https://doi.org/10.1080/00207454.2023.2283690

23. Rehman, A., Arif, M., Sajjad, N., Al-Ghadi, M. Q., Alagawany, M., Abd El-Hack, M. E., Alhimaidi, A. R., Elnesr, S. S., Almutairi, B. O., Amran, R. A., Hussein, E. O. S., & Swelum, A. A. (2020). Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. In Poultry Science (Vol. 99, Issue 12, p. 6946–6953). Elsevier BV. https://doi.org/10.1016/j.psj.2020.09.043

24. Bezpalko, O., Ushkalov, A., Davydovska, L., Ushkalov, V., Machuskyy, O., Melnyk, V., Shevchenko, O., & Musiiets, I. (2024). Composition of indicator bacteria in industrial and garden keeping of chickens. In One Health & Risk Management (Vol. 5, Issue 3, p. 42-51). Moldavian Biosafety and Biosecurity Association (MDBBA). https://doi.org/10.38045/ohrm.2024.3.05

25. Horalskyi, L.P., Khomych, V.T., & Kononskyi, O.I. (2019). Basics of histological technique and morphofunctional research methods in normal and pathological conditions: teaching. manual Zhytomyr, Polissya, 288 p.

26. Iakubchak, O. M., Vivych, A. Y., Hryb, J. V., Danylenko S. Н., & Taran, T. V. (2024). Production and meat quality of broiler chickens with the use of a probiotic complex of bifidobacteria and lactobacilli. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 3, p. 477-482). Oles Honchar Dnipro National University. https://doi.org/10.15421/022467

27. Wei, J., Zhang, B., Tang, J., Cao, J., Du, C., Wang, Z., Zhang, Y., Xie, M., Zhou, Z., & Hou, S. (2024). Embryonic growth and effect of embryonic age on quantitative and functional characteristics of duck primary hepatocytes. In Poultry Science (Vol. 103, Issue 4, p. 103531). Elsevier BV. https://doi.org/10.1016/j.psj.2024.103531

28. Wickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. In Vaccines (Vol. 10, Issue 2, p. 172). MDPI AG. https://doi.org/10.3390/vaccines10020172

29. Gheni, Q.J., Karomy, A.S., Yousif, A.L., & Saleh, W.M.M. (2025). Physiological and histological consequences of growth stunting in broiler chickens. In Advances in Animal and Veterinary Sciences (Vol. 13, Issue 1, p. 96-102). Nexus. https://dx.doi.org/10.17582/journal.aavs/2025/13.1.96.102

30. Hicks, J.A., Pike, B.E., & Liu, H.-C. (2022). Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. In Frontiers in Physiology (Vol. 13, p. 1020870). In Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1020870

31. Wishna-Kadawarage, R. N., Hickey, R. M., & Siwek, M. (2024). In-vitro selection of lactic acid bacteria to combat Salmonella enterica and Campylobacter jejuni in broiler chickens. In World Journal of Microbiology & Biotechnology (Vol. 40, Issue 4, p. 133). Springer Nature B.V. https://doi.org/10.1007/s11274-024-03946-8

32. Wyszyńska, A. K., & Godlewska, R. (2021). lactic acid bacteria - a promising tool for controlling chicken Campylobacter infection. In Frontiers in Microbiology (Vol. 12, p. 703441). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.703441

33. Neveling, D. P., & Dicks, L. M. T. (2021). Probiotics: an antibiotic replacement strategy for healthy broilers and productive rearing. In Probiotics and Antimicrobial Proteins (Vol. 13, Issue 1, p. 1-11). Springer Nature B.V. https://doi.org/10.1007/s12602-020-09640-z

34. Mohammed, A., Hu, J., Murugesan, R., & Cheng, H. W. (2022). Effects of a synbiotic as an antibiotic alternative on behavior, production performance, cecal microbial ecology, and jejunal histomorphology of broiler chickens under heat stress. In Plos One (Vol. 17, Issue 9, p. e0274179). Public Library of Science. https://doi.org/10.1371/journal.pone.0274179

35. Zaefarian, F., Abdollahi, M. R., Cowieson, A., & Ravindran, V. (2019). Avian liver: the forgotten organ. In Animals (Vol. 9, Issue 2, p. 63). MDPI AG. https://doi.org/10.3390/ani9020063

36. Alshamy, Z., Richardson, K. C., Harash, G., Hünigen, H., Röhe, I., Hafez, H. M., Plendl, J., & Al Masri, S. (2019). Structure and age-dependent growth of the chicken liver together with liver fat quantification: A comparison between a dual-purpose and a broiler chicken line. In PloS One (Vol. 14, Issue 12, p e0226903). Public Library of Science. https://doi.org/10.1371/journal.pone.0226903

37. Semenenko, M. P., Kuzminova, E. V., Osepchuk, D. V., Grin, V. A., Semenenko, K. A., & Zakharova, L. M. (2020). Age-related features of the manifestation of non-contagious pathology and metabolic disorders of liver in broiler chickens. In BIO Web of Conferences (Vol. 17, p. 00139). EDP Sciences. https://doi.org/10.1051/bioconf/20201700139

38. Mei, W., Hao, Y., Xie, H., Ni, Y., & Zhao, R. (2020). Hepatic inflammatory response to exogenous LPS challenge is exacerbated in broilers with fatty liver disease. In Animals (Vol. 10, Issue 3, p. 514). MDPI AG. https://doi.org/10.3390/ani10030514

39. Wei, R., Teng, Y., Han, C., Wei, S., Li, L., Liu, H., Hu, S., Kang, B., & Xu, H. (2024). Multi-omics reveals goose fatty liver formation from metabolic reprogramming. In Frontiers in Veterinary Science (Vol. 11, p. 1122904). Frontiers Media S.A. https://doi.org/10.3389/fvets.2024.1122904

40. Angelovič, M., Čapla, J., Zajác, P., Čurlej, J., Benešová, L., Jakabová, S., & Angelovičová, M. (2023). Fatty acids, their proportions, ratios, and relations in the selected muscles of the thigh and roast beef. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, p. 844–861). HACCP Consulting. https://doi.org/10.5219/1765

41. Alnahhas, N., Pouliot, E., & Saucier, L. (2023). The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review. In Frontiers in Physiology (Vol. 14, p. 1260987). Frontiers Media S.A. https://doi.org/10.3389/fphys.2023.1260987

42. Xing, T., Pan, X., Zhang, L., & Gao, F. (2021). Hepatic oxidative stress, apoptosis, and inflammation in broiler chickens with wooden breast myopathy. In Frontiers in Physiology (Vol. 12, p. 659777). Frontiers Media S.A. https://doi.org/10.3389/fphys.2021.659777

43. Liu, R., Kong, F., Xing, S., He, Z., Bai, L., Sun, J., Tan, X., Zhao, D., Zhao, G., & Wen, J. (2022). Dominant changes in the breast muscle lipid profiles of broiler chickens with wooden breast syndrome revealed by lipidomics analyses. In Journal of Animal Science and Biotechnology (Vol. 13, Issue 1, p. 93). BioMed Central Ltd. https://doi.org/10.1186/s40104-022-00743-x

44. Farafonov, S., Yaremko, O., Gutyj, B., Cherniy, N., Kozyr, V., Lykhach, A., & Mylostyvyi R. (2025). Functional activity of blood neutrophils and immune status of heifers under the influence of probiotics. Veterinarska Stanica (Vol. 56, Issue 1, p. 29-38). Croatian Veterinary Institute. https://doi.org/10.46419/vs.56.1.8

45. Shehata, A. A., Yalçın, S., Latorre, J. D., Basiouni, S., Attia, Y. A., Abd El-Wahab, A., Visscher, C., El-Seedi, H. R., Huber, C., Hafez, H. M., Eisenreich, W., & Tellez-Isaias, G. (2022). Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. In Microorganisms (Vol. 10, Issue 2, p. 395). MDPI AG. https://doi.org/10.3390/microorganisms10020395

46. Soumeh, E. A., Cedeno, A. D. R. C., Niknafs, S., Bromfield, J., & Hoffman, L. C. (2021). The efficiency of probiotics administrated via different routes and doses in enhancing production performance, meat quality, gut morphology, and microbial profile of broiler chickens. In Animals (Vol. 11, Issue 12, p. 3607). MDPI AG. https://doi.org/10.3390/ani11123607

47. Beyari, E. A., Alshammari, N. M., Alamoudi, S. A., Mohamed, A. S., Altarjami, L. R., Baty, R. S., Alqadri, N., Al-Nazawi, A. M., Saad, A. M., Taha, T. F., El-Saadony, M. T., El-Tarabily, K. A., & Mostafa, N. G. (2024). Influences of Bacillus pumilus SA388 as an environmentally friendly antibiotic alternative on growth performance, blood biochemistry, immunology, cecal microbiota, and meat quality in broiler chickens. In Poultry Science (Vol. 103, Issue 11, p. 104115). Elsevier BV. https://doi.org/10.1016/j.psj.2024.104115

48. Rogoskii, I., Mushtruk, M., Titova, L., Snezhko, O., Rogach, S., Blesnyuk, O., Rosamaha, Y., Zubok, T., Yeremenko, O., & Nadtochiy, O. (2020). Engineering management of starter cultures in study of temperature of fermentation of sour-milk drink with apiproducts. Potravinarstvo Slovak Journal of Food Sciences, 14, 1047–1054. https://doi.org/10.5219/1437

49. Vivych, A., Iakubchak, O., Horalskyi, L., Lebedenko, T., Umanets, D., Ivaniuta, A., Kharsika, I., & Pylypchuk, O. (2025). Effects of a probiotic complex on liver morphology in broiler chickens. (2025). In Scifood (Vol. 19, Issue 1, p. 309-326). HACCP Consulting. https://doi.org/10.5219/scifood.36

50. Śliżewska, K., Cukrowska, B., Smulikowska, S., & Cielecka-Kuszyk, J. (2019). the effect of probiotic supplementation on performance and the histopathological changes in liver and kidneys in broiler chickens fed diets with aflatoxin B₁. In Toxins (Vol. 11, Issue 2, p. 112). MDPI AG. https://doi.org/10.3390/toxins11020112

51. Fochesato, A. S., Martínez, M. P., Cuello, D., Poloni, V. L., Luna, M. J., Magnoli, A. P., Fernández, C., & Cavaglieri, L. R. (2024). Effects of a mixed additive based on Saccharomyces cerevisiae and Lactobacillus rhamnosus on broilers exposed to aflatoxin B1 by contaminated feed. In Revista Argentina de Microbiologia (Vol. 56, Issue 3, p. 312–321). Elsevier BV. https://doi.org/10.1016/j.ram.2023.11.006

52. Poloni, V., Magnoli, A., Fochesato, A., Cristofolini, A., Caverzan, M., Merkis, C., Montenegro, M., & Cavaglieri, L. (2020). A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. In Animal Nutrition (Vol. 6, Issue 1, p. 31-38). Elsevier BV. https://doi.org/10.1016/j.aninu.2019.11.006

53. Rashidi, N., Khatibjoo, A., Taherpour, K., Akbari-Gharaei, M., & Shirzadi, H. (2020). Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. In Poultry Science (Vol. 99, Issue 11, p. 5896–5906). Elsevier BV. https://doi.org/10.1016/j.psj.2020.08.034

54. Shanina, O., Minchenko, S., Gavrysh, T., Sukhenko, Y., Sukhenko, V., Vasyliv, V., Miedviedieva, N., Mushtruk, M., Stechyshyn, M., & Rozbytska, T. (2020). Substantiation of basic stages of gluten-free steamed bread production and its influence on quality of finished product. Potravinarstvo Slovak Journal of Food Sciences, 14, 189–201. https://doi.org/10.5219/1200

55. Selim, S., Hussein, E., Abdel-Megeid, N. S., Melebary, S. J., AL-Harbi, M. S., & Saleh, A. A. (2021). Growth performance, antioxidant activity, immune status, meat quality, liver fat content, and liver histomorphology of broiler chickens fed rice bran oil. In Animals (Vol. 11, Issue 12, p. 3410). MDPI AG. https://doi.org/10.3390/ani11123410

56. Chang, Y. Q., Moon, S. K., Wang, Y. Q., Xie, L. M., Cho, H. S., & Kim, S. K. (2024). Supplemental effects of different production methods of pine needle additives on growth performance, intestinal environment, meat quality and serum of broiler chickens. In Animal Bioscience (Vol. 37, Issue 7, p. 1263–1276). Asian-Australasian Association of Animal Production Societies. https://doi.org/10.5713/ab.24.0042

57. Al-Garadi, M. A., Al-Baadani, H. H., & Alqhtani, A. H. (2022). Growth performance, histological changes and functional tests of broiler chickens fed diets supplemented with Tribulus terrestris powder. In Animals (Vol. 12, Issue 15, p. 1930). MDPI AG. https://doi.org/10.3390/ani12151930

Downloads

Published

2025-09-24

Issue

Section

Articles

How to Cite

The microstructure of the liver in broiler chickens under the administration of a probiotic complex of Bifidobacteria and Lactobacilli. (2025). Scifood, 19(1), 537-560. https://doi.org/10.5219/scifood.68

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.