The microstructure of the liver in broiler chickens under the administration of a probiotic complex of Bifidobacteria and Lactobacilli
DOI:
https://doi.org/10.5219/scifood.68Keywords:
Bifidobacterium gallinarum, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus paracasei ssp. paracasei, broiler chicken rearingAbstract
The global consumption of broiler chicken meat is increasing annually, which involves the use of intensive technologies in poultry farming and the application of a significant number of additives aimed at preventing infectious diseases in livestock. One such means is the probiotic preparation TIMM-P, which includes Bifidobacterium gallinarum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus paracasei subsp. paracasei. To determine the effectiveness of its use, two groups of one-day-old Cobb 500 broiler chickens, each comprising 50 birds, were formed. The probiotic TIMM-P was administered via drinking over 2 hours in the morning, before feeding, on days 1–5, 21–25, and 30–35 of the rearing period. The liver microstructure of one-day-old broiler chickens did not differ between the groups, more pronounced changes were recorded at an older age. On the 14th day of growth in broiler chickens that received the basic diet, the cytoplasm of hepatocytes was characterised by a reduced optical density and contained small lipid droplets. During the administration of the probiotic TIMM-P to the chickens in this period, the cytoplasm of hepatocytes had a uniform and intense colouration while maintaining the radiality of the tubular structure of the liver lobules. On the 28th day of growth in broiler chickens of the control group, the development of fatty liver dystrophy was observed. The administration of probiotics to broiler chickens was associated with the development of small-droplet fatty liver dystrophy. On the 42nd day of growth, the phenomena of apoptosis, necrosis of hepatocytes, and fatty liver dystrophy with sections of the portal tracts in a state of interstitial inflammation, with stasis in various sections of the venous bed were detected in the liver of broiler chickens of the control group. The use of probiotics in broiler chickens partially reduced the intensity of pathological changes in the liver; however, in some animals, destruction of the tubular structure within its lobules was detected, accompanied by perivascular infiltration by polymorphic cells. The use of probiotics in broiler chickens did not significantly affect the volume of hepatocytes and their nuclei. Still, it contributed to a tendency to reduce their nuclear-cytoplasmic ratio, which indicated a higher intensity of liver function regeneration. The results obtained from the study indicate a positive effect of the complex probiotic TIMM-P on the liver microstructure, which, considering the indicators of meat quality and safety, may justify its introduction into industrial-scale broiler chicken meat production.
References
1. Zakharenko М. О., Cheverda І. М., & Kurbatova І. М. (2022). Effects of gonadectomy on clinical-hematological, metabolic and hormone conditions of cockerels. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 1, p. 10-14). Oles Honchar Dnipro National University. https://doi.org/10.15421/022202
2. Sychov, M., Ilchuk, I., Umanets, D., Balanchuk, I., Ibatullin, I., Umanets, R., Holubietva, T., Otchenashko, V., Kondratiuk, V., Tytariova, O., Kuzmenko, O., & Orishchuk O. (2022). Slaughter parameters of broiler chickens at different levels and ratios of arginine and lysine in the compound feed. Acta Fytotechnica et Zootechnica (Vol. 25, Issue 4, p. 285-293). Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra https://doi.org/10.15414/afz.2022.25.04.285-293
3. Tarradas, J., Tous, N., Esteve-Garcia, E., & Brufau, A. J. (2020). The control of intestinal inflammation: a major objective in the research of probiotic strains as alternatives to antibiotic growth promoters in poultry. In Microorganisms (Vol. 8, Issue 2, p. 148). MDPI AG. https://doi.org/10.3390/microorganisms8020148
4. Choi J. (2025). Challenges in poultry production systems and nutritional interventions. In Animals (Vol. 15, Issue 4, p. 530). MDPI AG. https://doi.org/10.3390/ani15040530
5. Shioda, K., Smith, F., Mucache, H. N., Marri, A. R., Chew, J., Levy, K., & Freeman, M. C. (2024). Purchase, consumption, and ownership of chickens and chicken products among households in Maputo, Mozambique: A cross-sectional study. In One Health (Vol. 19, p. 100943). Elsevier BV. https://doi.org/10.1016/j.onehlt.2024.100943
6. Jankowski, J., Tykałowski, B., Stępniowska, A., Konieczka, P., Koncicki, A., Matusevičius, P., & Ognik, K. (2022). Immune parameters in chickens treated with antibiotics and probiotics during early life. In Animals (Vol. 12, Issue 9, p. 1133). MDPI AG. https://doi.org/10.3390/ani12091133
7. Putra, R. P., Astuti, D., Respati, A. N., Ningsih, N., Triswanto, Yano, A. A., Gading, B. M. W. T., Jayanegara, A., Sholikin, M. M., Hassim, H. A., Azmi, A. F. M., Adli, D. N., & Irawan, A. (2024). Protective effects of feed additives on broiler chickens exposed to aflatoxins-contaminated feed: a systematic review and meta-analysis. In Veterinary Research Communications (Vol. 48, Issue 1, p. 225–244). Springer Nature B.V. https://doi.org/10.1007/s11259-023-10199-7
8. Shevchenko, L.V., Nedosekov, V.V., Davydovych, V.A., Rozhdestveskaya, T.N., & Drozdova, E.I. (2021). Impact of lycopene and astaxanthin on hematological and immunological parameters of laying hens. In IOP Conference Series: Earth and Environmental Science (Vol. 839, Issue 4, p. 042004). Institute of Physics. https://doi.org/10.1088/1755-1315/839/4/042004
9. Shevchenko, L. V., Dovbnia, Y. Y., Zheltonozhskaya, T. B., Permyakova, N. M., Vygovska, L. M., & Ushkalov, V. O. (2021). The effect of nanosilver in carriers based on polymer/inorganic hybrids on the quality and safety of edible chicken eggs. In Regulatory Mechanisms in Biosystems (Vol. 12, Issue 3, p. 391-395). Oles Honchar Dnipro National University. https://doi.org/10.15421/022153
10. Shevchenko, L. V., Dovbnia, Y. Y., Permyakova N. М., Zheltonozhskaya Т. B., Shulyak, S. V., & Klymchuk, D. O. (2022). Influence of nanosilver in hybrid carriers on morphological and biochemical blood parameters of laying hens. In Regulatory Mechanisms in Biosystems (Vol. 13, Issue 1, p. 15-22). Oles Honchar Dnipro National University. https://doi.org/10.15421/022203
11. Kumar, H., Bhardwaj, I., Nepovimova, E., Dhanjal, D. S., Shaikh, S.S., Knop, R., Atuahene, D., Shaikh, A. M., & Béla, K. (2025). Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. In Journal of Agriculture and Food Research (Vol. 21, p. 101859). Elsevier BV. https://doi.org/10.1016/j.jafr.2025.101859
12. Luhovyi, S., Kalynychenko, H., Trybrat, R., & Tymofiiv, M. (2025). Use of the probiotic preparation “SVITECO-PWC” in the cultivation of broiler chickens. In Animal Science and Food Technology (Vol. 16, Issue 1, p. 38-54). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.1.2025.38
13. Xiao, X., Cui, T., Qin, S., Wang, T., Liu, J., Sa, L., Wu, Y., Zhong, Y., & Yang, C. (2024). Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. In Poultry Science (Vol. 103, Issue 12, p. 104280). Elsevier BV https://doi.org/10.1016/j.psj.2024.104280
14. Naeem, M., & Bourassa, D. (2025). Probiotics in poultry: unlocking productivity through microbiome modulation and gut health. In Microorganisms (Vol. 13, Issue 2, p. 257). MDPI AG. https://doi.org/10.3390/microorganisms13020257
15. Amevor, F. K., Uyanga, V. A., Wu, L., Xu, D., Shu, G., Wang, Y., & Zhao, X. (2025). Enhancing poultry health and productivity through the liver-gut axis with integrated nutritional and immunological approaches: a mini-review. In Frontiers in Physiology (Vol. 16, p. 1537099). Frontiers Media S.A. https://doi.org/10.3389/fphys.2025.1537099
16. Vovkotrub, V., Kolacz, R., Iakubchak, O., Vovkotrub, N., & Shevchenko, L. (2024). Effect of lactic acid bacteria ferment cultures on pork freshness. In Ukrainian Journal of Veterinary Sciences, (Vol. 15, Issue 1, p. 48-65). National University of Life and Environmental Sciences of Ukraine.https://doi.org/10.31548/veterinary1.2024.48
17. Vovkotrub, V., Iakubchak, O., Horalskyi, L., Vovkotrub, N., Shevchenko, L., Shynkaruk, N., Rozbytska, T., Slyva, Y., Tupitska, O., & Shtonda, O. (2023). The microscopic structure of pork neck after cooling with showering stiving and processing by culture Lactobacillus sakei. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, p. 759–776). HACCP Consulting. https://doi.org/10.5219/1905
18. Bal-Prylypko, L., Danylenko, S., Mykhailova, O., Nedorizanyuk, L., Bovkun, A., Slobodyanyuk, N., Omelian, A., & Ivaniuta, A. (2024). Influence of starter cultures on microbiological and physical-chemical parameters of dry-cured products. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 18, pp. 313–330). HACCP Consulting. https://doi.org/10.5219/1960
19. Lokes, S. I., Shevchenko, L. V., Mykhalska, V. M., Poliakovskyi, V. M., & Zlamanyuk, L. M. (2024). Influence of Lactobacillus curvatus and Lactococcus lactis subsp. lactis on the shelf life of sausages in vacuum packaging. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 2, p. 321-326). Oles Honchar Dnipro National University. https://doi.org/10.15421/022446
20. Lokes, S. I., Shevchenko, L. V., Mykhalska, V. M., Poliakovskyi, V. M., & Chepil, L. V. (2024). Chemical composition of sausages processed with starter cultures Lactobacillus curvatus and Lactococcus lactis subsp. lactis during storage in vacuum packaging. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 3, p. 405-409). Oles Honchar Dnipro National University. https://doi.org/10.15421/022456
21. Bal-Prylypko, L., Kanishchev, O., Mushtruk, M., & Leonova, B. (2024). Development of technology for extended-shelf-life meat products. In Animal Science and Food Technology, (Vol. 15, Issue 4, p. 132-149). National University of Life and Environmental Sciences of Ukraine. https://doi.org/10.31548/animal.4.2024.132
22. Nisa, K., Arisandi, R., Ibrahim, N., & Hardian, H. (2025). Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. In The International Journal of Neuroscience (Vol. 135, Issue 1, p. 41-51). Informa UK Limited. https://doi.org/10.1080/00207454.2023.2283690
23. Rehman, A., Arif, M., Sajjad, N., Al-Ghadi, M. Q., Alagawany, M., Abd El-Hack, M. E., Alhimaidi, A. R., Elnesr, S. S., Almutairi, B. O., Amran, R. A., Hussein, E. O. S., & Swelum, A. A. (2020). Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. In Poultry Science (Vol. 99, Issue 12, p. 6946–6953). Elsevier BV. https://doi.org/10.1016/j.psj.2020.09.043
24. Bezpalko, O., Ushkalov, A., Davydovska, L., Ushkalov, V., Machuskyy, O., Melnyk, V., Shevchenko, O., & Musiiets, I. (2024). Composition of indicator bacteria in industrial and garden keeping of chickens. In One Health & Risk Management (Vol. 5, Issue 3, p. 42-51). Moldavian Biosafety and Biosecurity Association (MDBBA). https://doi.org/10.38045/ohrm.2024.3.05
25. Horalskyi, L.P., Khomych, V.T., & Kononskyi, O.I. (2019). Basics of histological technique and morphofunctional research methods in normal and pathological conditions: teaching. manual Zhytomyr, Polissya, 288 p.
26. Iakubchak, O. M., Vivych, A. Y., Hryb, J. V., Danylenko S. Н., & Taran, T. V. (2024). Production and meat quality of broiler chickens with the use of a probiotic complex of bifidobacteria and lactobacilli. In Regulatory Mechanisms in Biosystems (Vol. 15, Issue 3, p. 477-482). Oles Honchar Dnipro National University. https://doi.org/10.15421/022467
27. Wei, J., Zhang, B., Tang, J., Cao, J., Du, C., Wang, Z., Zhang, Y., Xie, M., Zhou, Z., & Hou, S. (2024). Embryonic growth and effect of embryonic age on quantitative and functional characteristics of duck primary hepatocytes. In Poultry Science (Vol. 103, Issue 4, p. 103531). Elsevier BV. https://doi.org/10.1016/j.psj.2024.103531
28. Wickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. In Vaccines (Vol. 10, Issue 2, p. 172). MDPI AG. https://doi.org/10.3390/vaccines10020172
29. Gheni, Q.J., Karomy, A.S., Yousif, A.L., & Saleh, W.M.M. (2025). Physiological and histological consequences of growth stunting in broiler chickens. In Advances in Animal and Veterinary Sciences (Vol. 13, Issue 1, p. 96-102). Nexus. https://dx.doi.org/10.17582/journal.aavs/2025/13.1.96.102
30. Hicks, J.A., Pike, B.E., & Liu, H.-C. (2022). Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. In Frontiers in Physiology (Vol. 13, p. 1020870). In Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1020870
31. Wishna-Kadawarage, R. N., Hickey, R. M., & Siwek, M. (2024). In-vitro selection of lactic acid bacteria to combat Salmonella enterica and Campylobacter jejuni in broiler chickens. In World Journal of Microbiology & Biotechnology (Vol. 40, Issue 4, p. 133). Springer Nature B.V. https://doi.org/10.1007/s11274-024-03946-8
32. Wyszyńska, A. K., & Godlewska, R. (2021). lactic acid bacteria - a promising tool for controlling chicken Campylobacter infection. In Frontiers in Microbiology (Vol. 12, p. 703441). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.703441
33. Neveling, D. P., & Dicks, L. M. T. (2021). Probiotics: an antibiotic replacement strategy for healthy broilers and productive rearing. In Probiotics and Antimicrobial Proteins (Vol. 13, Issue 1, p. 1-11). Springer Nature B.V. https://doi.org/10.1007/s12602-020-09640-z
34. Mohammed, A., Hu, J., Murugesan, R., & Cheng, H. W. (2022). Effects of a synbiotic as an antibiotic alternative on behavior, production performance, cecal microbial ecology, and jejunal histomorphology of broiler chickens under heat stress. In Plos One (Vol. 17, Issue 9, p. e0274179). Public Library of Science. https://doi.org/10.1371/journal.pone.0274179
35. Zaefarian, F., Abdollahi, M. R., Cowieson, A., & Ravindran, V. (2019). Avian liver: the forgotten organ. In Animals (Vol. 9, Issue 2, p. 63). MDPI AG. https://doi.org/10.3390/ani9020063
36. Alshamy, Z., Richardson, K. C., Harash, G., Hünigen, H., Röhe, I., Hafez, H. M., Plendl, J., & Al Masri, S. (2019). Structure and age-dependent growth of the chicken liver together with liver fat quantification: A comparison between a dual-purpose and a broiler chicken line. In PloS One (Vol. 14, Issue 12, p e0226903). Public Library of Science. https://doi.org/10.1371/journal.pone.0226903
37. Semenenko, M. P., Kuzminova, E. V., Osepchuk, D. V., Grin, V. A., Semenenko, K. A., & Zakharova, L. M. (2020). Age-related features of the manifestation of non-contagious pathology and metabolic disorders of liver in broiler chickens. In BIO Web of Conferences (Vol. 17, p. 00139). EDP Sciences. https://doi.org/10.1051/bioconf/20201700139
38. Mei, W., Hao, Y., Xie, H., Ni, Y., & Zhao, R. (2020). Hepatic inflammatory response to exogenous LPS challenge is exacerbated in broilers with fatty liver disease. In Animals (Vol. 10, Issue 3, p. 514). MDPI AG. https://doi.org/10.3390/ani10030514
39. Wei, R., Teng, Y., Han, C., Wei, S., Li, L., Liu, H., Hu, S., Kang, B., & Xu, H. (2024). Multi-omics reveals goose fatty liver formation from metabolic reprogramming. In Frontiers in Veterinary Science (Vol. 11, p. 1122904). Frontiers Media S.A. https://doi.org/10.3389/fvets.2024.1122904
40. Angelovič, M., Čapla, J., Zajác, P., Čurlej, J., Benešová, L., Jakabová, S., & Angelovičová, M. (2023). Fatty acids, their proportions, ratios, and relations in the selected muscles of the thigh and roast beef. In Potravinarstvo Slovak Journal of Food Sciences (Vol. 17, p. 844–861). HACCP Consulting. https://doi.org/10.5219/1765
41. Alnahhas, N., Pouliot, E., & Saucier, L. (2023). The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review. In Frontiers in Physiology (Vol. 14, p. 1260987). Frontiers Media S.A. https://doi.org/10.3389/fphys.2023.1260987
42. Xing, T., Pan, X., Zhang, L., & Gao, F. (2021). Hepatic oxidative stress, apoptosis, and inflammation in broiler chickens with wooden breast myopathy. In Frontiers in Physiology (Vol. 12, p. 659777). Frontiers Media S.A. https://doi.org/10.3389/fphys.2021.659777
43. Liu, R., Kong, F., Xing, S., He, Z., Bai, L., Sun, J., Tan, X., Zhao, D., Zhao, G., & Wen, J. (2022). Dominant changes in the breast muscle lipid profiles of broiler chickens with wooden breast syndrome revealed by lipidomics analyses. In Journal of Animal Science and Biotechnology (Vol. 13, Issue 1, p. 93). BioMed Central Ltd. https://doi.org/10.1186/s40104-022-00743-x
44. Farafonov, S., Yaremko, O., Gutyj, B., Cherniy, N., Kozyr, V., Lykhach, A., & Mylostyvyi R. (2025). Functional activity of blood neutrophils and immune status of heifers under the influence of probiotics. Veterinarska Stanica (Vol. 56, Issue 1, p. 29-38). Croatian Veterinary Institute. https://doi.org/10.46419/vs.56.1.8
45. Shehata, A. A., Yalçın, S., Latorre, J. D., Basiouni, S., Attia, Y. A., Abd El-Wahab, A., Visscher, C., El-Seedi, H. R., Huber, C., Hafez, H. M., Eisenreich, W., & Tellez-Isaias, G. (2022). Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. In Microorganisms (Vol. 10, Issue 2, p. 395). MDPI AG. https://doi.org/10.3390/microorganisms10020395
46. Soumeh, E. A., Cedeno, A. D. R. C., Niknafs, S., Bromfield, J., & Hoffman, L. C. (2021). The efficiency of probiotics administrated via different routes and doses in enhancing production performance, meat quality, gut morphology, and microbial profile of broiler chickens. In Animals (Vol. 11, Issue 12, p. 3607). MDPI AG. https://doi.org/10.3390/ani11123607
47. Beyari, E. A., Alshammari, N. M., Alamoudi, S. A., Mohamed, A. S., Altarjami, L. R., Baty, R. S., Alqadri, N., Al-Nazawi, A. M., Saad, A. M., Taha, T. F., El-Saadony, M. T., El-Tarabily, K. A., & Mostafa, N. G. (2024). Influences of Bacillus pumilus SA388 as an environmentally friendly antibiotic alternative on growth performance, blood biochemistry, immunology, cecal microbiota, and meat quality in broiler chickens. In Poultry Science (Vol. 103, Issue 11, p. 104115). Elsevier BV. https://doi.org/10.1016/j.psj.2024.104115
48. Rogoskii, I., Mushtruk, M., Titova, L., Snezhko, O., Rogach, S., Blesnyuk, O., Rosamaha, Y., Zubok, T., Yeremenko, O., & Nadtochiy, O. (2020). Engineering management of starter cultures in study of temperature of fermentation of sour-milk drink with apiproducts. Potravinarstvo Slovak Journal of Food Sciences, 14, 1047–1054. https://doi.org/10.5219/1437
49. Vivych, A., Iakubchak, O., Horalskyi, L., Lebedenko, T., Umanets, D., Ivaniuta, A., Kharsika, I., & Pylypchuk, O. (2025). Effects of a probiotic complex on liver morphology in broiler chickens. (2025). In Scifood (Vol. 19, Issue 1, p. 309-326). HACCP Consulting. https://doi.org/10.5219/scifood.36
50. Śliżewska, K., Cukrowska, B., Smulikowska, S., & Cielecka-Kuszyk, J. (2019). the effect of probiotic supplementation on performance and the histopathological changes in liver and kidneys in broiler chickens fed diets with aflatoxin B₁. In Toxins (Vol. 11, Issue 2, p. 112). MDPI AG. https://doi.org/10.3390/toxins11020112
51. Fochesato, A. S., Martínez, M. P., Cuello, D., Poloni, V. L., Luna, M. J., Magnoli, A. P., Fernández, C., & Cavaglieri, L. R. (2024). Effects of a mixed additive based on Saccharomyces cerevisiae and Lactobacillus rhamnosus on broilers exposed to aflatoxin B1 by contaminated feed. In Revista Argentina de Microbiologia (Vol. 56, Issue 3, p. 312–321). Elsevier BV. https://doi.org/10.1016/j.ram.2023.11.006
52. Poloni, V., Magnoli, A., Fochesato, A., Cristofolini, A., Caverzan, M., Merkis, C., Montenegro, M., & Cavaglieri, L. (2020). A Saccharomyces cerevisiae RC016-based feed additive reduces liver toxicity, residual aflatoxin B1 levels and positively influences intestinal morphology in broiler chickens fed chronic aflatoxin B1-contaminated diets. In Animal Nutrition (Vol. 6, Issue 1, p. 31-38). Elsevier BV. https://doi.org/10.1016/j.aninu.2019.11.006
53. Rashidi, N., Khatibjoo, A., Taherpour, K., Akbari-Gharaei, M., & Shirzadi, H. (2020). Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. In Poultry Science (Vol. 99, Issue 11, p. 5896–5906). Elsevier BV. https://doi.org/10.1016/j.psj.2020.08.034
54. Shanina, O., Minchenko, S., Gavrysh, T., Sukhenko, Y., Sukhenko, V., Vasyliv, V., Miedviedieva, N., Mushtruk, M., Stechyshyn, M., & Rozbytska, T. (2020). Substantiation of basic stages of gluten-free steamed bread production and its influence on quality of finished product. Potravinarstvo Slovak Journal of Food Sciences, 14, 189–201. https://doi.org/10.5219/1200
55. Selim, S., Hussein, E., Abdel-Megeid, N. S., Melebary, S. J., AL-Harbi, M. S., & Saleh, A. A. (2021). Growth performance, antioxidant activity, immune status, meat quality, liver fat content, and liver histomorphology of broiler chickens fed rice bran oil. In Animals (Vol. 11, Issue 12, p. 3410). MDPI AG. https://doi.org/10.3390/ani11123410
56. Chang, Y. Q., Moon, S. K., Wang, Y. Q., Xie, L. M., Cho, H. S., & Kim, S. K. (2024). Supplemental effects of different production methods of pine needle additives on growth performance, intestinal environment, meat quality and serum of broiler chickens. In Animal Bioscience (Vol. 37, Issue 7, p. 1263–1276). Asian-Australasian Association of Animal Production Societies. https://doi.org/10.5713/ab.24.0042
57. Al-Garadi, M. A., Al-Baadani, H. H., & Alqhtani, A. H. (2022). Growth performance, histological changes and functional tests of broiler chickens fed diets supplemented with Tribulus terrestris powder. In Animals (Vol. 12, Issue 15, p. 1930). MDPI AG. https://doi.org/10.3390/ani12151930
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Artem Vivych, Olha Iakubchak , Leonid Horalskyi, Larysa Shevchenko, Lyudmila Beyko, Anastasia Lialyk, Yuliya Kryzhova, Tatyana Naumenko (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This license permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.